
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1346580/publications.pdf Version: 2024-02-01

Ρνητνδυ Τνο

#	Article	IF	CITATIONS
1	Structural and Transcriptional Analysis of the Self-Incompatibility Locus of Almond: Identification of a Pollen-Expressed F-Box Gene with Haplotype-Specific Polymorphism. Plant Cell, 2003, 15, 771-781.	6.6	422
2	A Y-chromosome–encoded small RNA acts as a sex determinant in persimmons. Science, 2014, 346, 646-650.	12.6	330
3	TheShaplotype-specific F-box protein gene,SFB, is defective in self-compatible haplotypes ofPrunus aviumandP. mume. Plant Journal, 2004, 39, 573-586.	5.7	246
4	Molecular Typing of S-alleles through Identification, Characterization and cDNA Cloning for S-RNases in Sweet Cherry. Journal of the American Society for Horticultural Science, 1999, 124, 224-233.	1.0	234
5	Functional and Expressional Analyses of <i>PmDAM</i> Genes Associated with Endodormancy in Japanese Apricot. Plant Physiology, 2011, 157, 485-497.	4.8	219
6	A Pollen-Expressed Gene for a Novel Protein with an F-box Motif that is Very Tightly Linked to a Gene for S-RNase in Two Species of Cherry, Prunus cerasus and P. avium. Plant and Cell Physiology, 2003, 44, 764-769.	3.1	181
7	Expressional regulation of PpDAM5 and PpDAM6, peach (Prunus persica) dormancy-associated MADS-box genes, by low temperature and dormancy-breaking reagent treatment. Journal of Experimental Botany, 2011, 62, 3481-3488.	4.8	162
8	A Y-Encoded Suppressor of Feminization Arose via Lineage-Specific Duplication of a Cytokinin Response Regulator in Kiwifruit. Plant Cell, 2018, 30, 780-795.	6.6	151
9	Two Y-chromosome-encoded genes determine sex in kiwifruit. Nature Plants, 2019, 5, 801-809.	9.3	148
10	Primary structural features of the S haplotype-specific F-box protein, SFB, in Prunus. Sexual Plant Reproduction, 2004, 16, 235-243.	2.2	139
11	Accumulation of Nonfunctional S-Haplotypes Results in the Breakdown of Gametophytic Self-Incompatibility in Tetraploid Prunus. Genetics, 2006, 172, 1191-1198.	2.9	132
12	The S-RNase-based gametophytic self-incompatibility system in Prunus exhibits distinct genetic and molecular features. Scientia Horticulturae, 2010, 124, 423-433.	3.6	122
13	Prunus genetics and applications after de novo genome sequencing: achievements and prospects. Horticulture Research, 2019, 6, 58.	6.3	121
14	Suppression Subtractive Hybridization and Differential Screening Reveals Endodormancy-associated Expression of an SVP/AGL24-type MADS-box Gene in Lateral Vegetative Buds of Japanese Apricot. Journal of the American Society for Horticultural Science, 2008, 133, 708-716.	1.0	108
15	Epigenetic Regulation of the Sex Determination Gene <i>MeGI</i> in Polyploid Persimmon. Plant Cell, 2016, 28, 2905-2915.	6.6	97
16	Self-compatible peach (Prunus persica) has mutant versions of the S haplotypes found in self-incompatible Prunus species. Plant Molecular Biology, 2006, 63, 109-123.	3.9	96
17	Transformation of Japanese persimmon (Diospyros kaki Thunb.) with apple cDNA encoding NADP-dependent sorbitol-6-phosphate dehydrogenase. Plant Science, 2001, 160, 837-845.	3.6	94
18	Molecular characterization of three non-functional S-haplotypes in sour cherry (Prunus cerasus). Plant Molecular Biology, 2006, 62, 371-383.	3.9	93

#	Article	IF	CITATIONS
19	Sorbitol Synthesis in Transgenic Tobacco with Apple cDNA Encoding NADP-Dependent Sorbitol-6-Phosphate Dehydrogenase. Plant and Cell Physiology, 1995, 36, 525-532.	3.1	84
20	Isolation of LEAFY and TERMINAL FLOWER 1 homologues from six fruit tree species in the subfamily Maloideae of the Rosaceae. Sexual Plant Reproduction, 2005, 17, 277-287.	2.2	81
21	One Hundred Ways to Invent the Sexes: Theoretical and Observed Paths to Dioecy in Plants. Annual Review of Plant Biology, 2018, 69, 553-575.	18.7	78
22	Characterization of the <i>S</i> -Locus Region of Almond (<i>Prunus dulcis</i>): Analysis of a Somaclonal Mutant and a Cosmid Contig for an <i>S</i> Haplotype. Genetics, 2001, 158, 379-386.	2.9	77
23	Identification and Characterization of S-RNases in Tetraploid Sour Cherry (Prunus cerasus). Journal of the American Society for Horticultural Science, 2001, 126, 661-667.	1.0	77
24	Self-incompatibility (S) locus region of the mutated S6-haplotype of sour cherry (Prunus cerasus) contains a functional pollen S allele and a non-functional pistil S allele. Journal of Experimental Botany, 2003, 54, 2431-2437.	4.8	70
25	Overexpression of Prunus DAM6 inhibits growth, represses bud break competency of dormant buds and delays bud outgrowth in apple plants. PLoS ONE, 2019, 14, e0214788.	2.5	69
26	Molecular Basis of Self-(in)compatibility and Current Status of S-genotyping in Rosaceous Fruit Trees. Japanese Society for Horticultural Science, 2009, 78, 137-157.	0.8	64
27	Genome-wide view of genetic diversity reveals paths of selection and cultivar differentiation in peach domestication. DNA Research, 2016, 23, 271-282.	3.4	64
28	Linkage and physical distances between the S-haplotype S-RNase and SFB genes in sweet cherry. Sexual Plant Reproduction, 2005, 17, 289-296.	2.2	63
29	Self-compatibility and incompatibility in tetraploid sour cherry (Prunus cerasus L.). Sexual Plant Reproduction, 2002, 15, 39-46.	2.2	62
30	Title is missing!. Molecular Breeding, 2000, 6, 501-510.	2.1	59
31	The use of the S haplotype-specific F-box protein gene, SFB, as a molecular marker for S-haplotypes and self-compatibility in Japanese apricot (Prunus mume). Theoretical and Applied Genetics, 2003, 107, 1357-1361.	3.6	56
32	The persimmon genome reveals clues to the evolution of a lineage-specific sex determination system in plants. PLoS Genetics, 2020, 16, e1008566.	3.5	54
33	Expression analysis of PpDAM5 and PpDAM6 during flower bud development in peach (Prunus persica). Scientia Horticulturae, 2011, 129, 844-848.	3.6	53
34	ldentification of a Skp1-Like Protein Interacting with SFB, the Pollen <i>S</i> Determinant of the Gametophytic Self-Incompatibility in <i>Prunus</i> ÂÂ. Plant Physiology, 2012, 159, 1252-1262.	4.8	53
35	Quantitative characterization of fruit shape and its differentiation pattern in diverse persimmon (Diospyros kaki) cultivars. Scientia Horticulturae, 2018, 228, 41-48.	3.6	53
36	The Mutated S1-Haplotype in Sour Cherry Has an Altered S-Haplotype–Specific F-Box Protein Gene. Journal of Heredity, 2006, 97, 514-520.	2.4	51

RYUTARO TAO

#	Article	IF	CITATIONS
37	Engineering Genetic Resistance against Insects in Japanese Persimmon Using the cryIA(c) Gene of Bacillus thuringiensis. Journal of the American Society for Horticultural Science, 1997, 122, 764-771.	1.0	51
38	Diversity of <i>S</i> -RNase genes and <i>S</i> -haplotypes in Japanese plum (<i>Prunus salicina</i> Lindl.). Journal of Horticultural Science and Biotechnology, 2002, 77, 658-664.	1.9	47
39	Gene networks orchestrated by <i>Me<scp>Gl</scp></i> : a singleâ€factor mechanism underlying sex determination in persimmon. Plant Journal, 2019, 98, 97-111.	5.7	47
40	Distinct Self-recognition in the <i>Prunus</i> S-RNase-based Gametophytic Self-incompatibility System. Horticulture Journal, 2016, 85, 289-305.	0.8	46
41	Cultivar discrimination of litchi fruit images using deep learning. Scientia Horticulturae, 2020, 269, 109360.	3.6	46
42	Molecular Markers for Self-compatibility in Japanese Apricot (Prunus mume). Hortscience: A Publication of the American Society for Hortcultural Science, 2000, 35, 1121-1123.	1.0	46
43	Recognition of a wide-range of S-RNases by S locus F-box like 2, a general-inhibitor candidate in the Prunus-specific S-RNase-based self-incompatibility system. Plant Molecular Biology, 2016, 91, 459-469.	3.9	45
44	Simultaneous down-regulation of <i>DORMANCY-ASSOCIATED MADS-box6</i> and <i>SOC1</i> during dormancy release in Japanese apricot (<i>Prunus mume</i>) flower buds. Journal of Horticultural Science and Biotechnology, 2016, 91, 476-482.	1.9	42
45	A Low Transcriptional Level of Se-RNase in the Se -haplotype Confers Self-compatibility in Japanese Plum. Journal of the American Society for Horticultural Science, 2007, 132, 396-406.	1.0	41
46	Gene expression and ethylene production in transgenic pear (Pyrus communis cv. †La France') with sense or antisense cDNA encoding ACC oxidase. Plant Science, 2007, 173, 32-42.	3.6	40
47	Production of Nonaploid (2n = 9x) Japanese Persimmons (Diospyros kaki) by Pollination with Unreduced (2n = 6x) Pollen and Embryo Rescue Culture. Journal of the American Society for Horticultural Science, 2000, 125, 609-614.	1.0	40
48	Identification and cDNA cloning for S-RNases in self-incompatible Japanese plum (Prunus salicina Lindl.) Tj ETQqO	0 0 rgBT / 1.0	Oyerlock 10
49	Genome Re-Sequencing of Diverse Sweet Cherry (Prunus avium) Individuals Reveals a Modifier Gene Mutation Conferring Pollen-Part Self-Compatibility. Plant and Cell Physiology, 2018, 59, 1265-1275.	3.1	37
50	Determination of <i>S-haplotypes</i> of Japanese plum (<i>Prunus salicina</i> Lindl.) cultivars by PCR and cross-pollination tests. Journal of Horticultural Science and Biotechnology, 2003, 78, 315-318.	1.9	35
51	Characterization of SLFL1, a pollen-expressed F-box gene located in the Prunus S locus. Sexual Plant Reproduction, 2008, 21, 113-121.	2.2	35
52	Molecular and Genetic Analyses of Four Nonfunctional <i>S</i> Haplotype Variants Derived from a Common Ancestral <i>S</i> Haplotype Identified in Sour Cherry (<i>Prunus cerasus</i> L.). Genetics, 2010, 184, 411-427.	2.9	35
53	Comparative Analyses of Dormancy-associated MADS-box Genes, PpDAM5 and PpDAM6, in Low- and High-chill Peaches (Prunus persica L.). Japanese Society for Horticultural Science, 2011, 80, 276-283.	0.8	35

⁵⁴Identification of QTLs controlling chilling and heat requirements for dormancy release and bud
break in Japanese apricot (Prunus mume). Tree Genetics and Genomes, 2018, 14, 1.1.635

#	Article	IF	CITATIONS
55	Genetic and molecular characterization of three novel S-haplotypes in sour cherry (Prunus cerasus) Tj ETQq1 1 0.	784314 ı 4.8	rgBT /Overloc
56	Determining the S-genotypes of several sweet cherry cultivars based on PCR-RFLP analysis. Journal of Horticultural Science and Biotechnology, 2000, 75, 562-567.	1.9	33
57	Insights into the <i>Prunus</i> -Specific S-RNase-Based Self-Incompatibility System from a Genome-Wide Analysis of the Evolutionary Radiation of <i>S</i> Locus-Related F-box Genes. Plant and Cell Physiology, 2016, 57, 1281-1294.	3.1	32
58	<i>Se</i> -haplotype confers self-compatibility in Japanese plum (<i>Prunus salicina</i> Lindl.). Journal of Horticultural Science and Biotechnology, 2005, 80, 760-764.	1.9	31
59	A modifier locus affecting the expression of the S-RNase gene could be the cause of breakdown of self-incompatibility in almond. Sexual Plant Reproduction, 2009, 22, 179-186.	2.2	31
60	Two Novel Self-compatible S Haplotypes in Peach (Prunus persica). Japanese Society for Horticultural Science, 2014, 83, 203-213.	0.8	30
61	Preharvest long-term exposure to UV-B radiation promotes fruit ripening and modifies stage-specific anthocyanin metabolism in highbush blueberry. Horticulture Research, 2021, 8, 67.	6.3	30
62	Engineered sorbitol accumulation induces dwarfism in Japanese persimmon. Journal of Plant Physiology, 2004, 161, 1177-1184.	3.5	29
63	454-Pyrosequencing of the Transcriptome in Leaf and Flower Buds of Japanese Apricot (Prunus mume) Tj ETQq1 239-250.	1 0.7843 0.8	14 rgBT /Ove 29
64	Title is missing!. Euphytica, 2002, 123, 9-20.	1.2	28
65	Identification of a TFL1 ortholog in Japanese apricot (Prunus mume Sieb. et Zucc.). Scientia Horticulturae, 2010, 125, 608-616.	3.6	26
66	Revisiting the S-allele Nomenclature in Sweet Cherry (Prunus avium) Using RFLP Profiles. Journal of the American Society for Horticultural Science, 2001, 126, 654-660.	1.0	26
67	Fine genotyping of a highly polymorphic ASTRINGENCY-linked locus reveals variable hexasomic inheritance in persimmon (Diospyros kaki Thunb.) cultivars. Tree Genetics and Genomes, 2012, 8, 195-204.	1.6	25
68	Evolutionary Analysis of Genes for S-RNase-based Self-incompatibility Reveals <i>S</i> Locus Duplications in the Ancestral Rosaceae. Horticulture Journal, 2015, 84, 233-242.	0.8	24
69	Recognition of S-RNases by an S locus F-box like protein and an S haplotype-specific F-box like protein in the Prunus-specific self-incompatibility system. Plant Molecular Biology, 2019, 100, 367-378.	3.9	23
70	Cloning and Characterization of a Self-compatible Sf Haplotype in Almond [Prunus dulcis (Mill.) D.A. Webb. syn. P. amygdalus Batsch] to Resolve Previous Confusion in Its Sf-RNase Sequence. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 609-613.	1.0	22
71	A coupled yeast signal sequence trap and transient plant expression strategy to identify genes encoding secreted proteins from peach pistils. Journal of Experimental Botany, 2005, 56, 2229-2238.	4.8	21
72	Quantitative real-time PCR to determine allele number for the astringency locus by analysis of a linked marker in Diospyros kaki Thunb. Tree Genetics and Genomes, 2009, 5, 483-492.	1.6	21

#	Article	IF	CITATIONS
73	A male determinant gene in diploid dioecious Diospyros, OGI, is required for male flower production in monoecious individuals of Oriental persimmon (D. kaki). Scientia Horticulturae, 2016, 213, 243-251.	3.6	21
74	RNA-sequencing Analysis Identifies Genes Associated with Chilling-mediated Endodormancy Release in Apple. Journal of the American Society for Horticultural Science, 2018, 143, 194-206.	1.0	21
75	Targeted mutagenesis of <i>CENTRORADIALIS</i> using CRISPR/Cas9 system through the improvement of genetic transformation efficiency of tetraploid highbush blueberry. Journal of Horticultural Science and Biotechnology, 2021, 96, 153-161.	1.9	21
76	Reinvention of hermaphroditism via activation of a RADIALIS-like gene in hexaploid persimmon. Nature Plants, 2022, 8, 217-224.	9.3	21
77	Relationship between Floral Development and Transcription Levels of LEAFY and TERMINAL FLOWER 1 Homologs in Japanese Pear (Pyrus pyrifolia Nakai) and Quince (Cydonia oblonga Mill.). Journal of the Japanese Society for Horticultural Science, 2007, 76, 294-304.	0.5	19
78	Functional and expressional analyses of apple <i>FLC-</i> like in relation to dormancy progress and flower bud development. Tree Physiology, 2021, 41, 562-570.	3.1	19
79	Identification of quantitative trait loci associated with self-compatibility in a Prunus species. Tree Genetics and Genomes, 2011, 7, 629-639.	1.6	18
80	Characterization of a gene regulatory network underlying astringency loss in persimmon fruit. Planta, 2018, 247, 733-743.	3.2	18
81	Single-node Stem Cuttings from Root Suckers to Propagate a Potentially Dwarfing Rootstock for Japanese Persimmon. HortTechnology, 2000, 10, 776-780.	0.9	18
82	Regeneration of somatic hybrids from electrofused protoplasts of Japanese persimmon (Diospyros kaki) Tj ETQqC	0.0 rgBT 3.6	/Overlock 10
83	Production of somatic hybrids between Diospyros glandulosa and D. kaki by protoplast fusion. Plant Cell, Tissue and Organ Culture, 1998, 54, 85-91.	2.3	17
84	Genomic distribution of three repetitive DNAs in cultivated hexaploid Diospyros spp. (D. kaki and D.) Tj ETQqO 0	OrgBT ∕Ov	erlock 10 Tf
85	The number, age, sharing and relatedness of <i>S</i> -locus specificities in <i>Prunus</i> . Genetical Research, 2008, 90, 17-26.	0.9	17
86	Virus-induced Gene Silencing in Apricot (Prunus armeniaca L.) and Japanese Apricot (P. mume Siebold) Tj ETQq0 (Science, 2014, 83, 23-31.	0 rgBT /0 0.8	Overlock 10 7 17
87	Characterization of post-mating interspecific cross-compatibility in Prunus (Rosaceae). Scientia Horticulturae, 2019, 246, 693-699.	3.6	17
88	Adventitious Bud Formation from Callus Cultures of Japanese Persimmon. Hortscience: A Publication of the American Society for Hortcultural Science, 1992, 27, 259-261.	1.0	17
89	Custom Microarray Analysis for Transcript Profiling of Dormant Vegetative Buds of Japanese Apricot during Prolonged Chilling Exposure. Japanese Society for Horticultural Science, 2014, 83, 1-16.	0.8	16
90	Evolution of Lineage-Specific Gene Networks Underlying the Considerable Fruit Shape Diversity in Persimmon. Plant and Cell Physiology, 2019, 60, 2464-2477.	3.1	16

#	Article	IF	CITATIONS
91	Plant regeneration from callus protoplasts of adult Japanese persimmon (Diospyros kaki L.). Plant Science, 1991, 79, 119-125.	3.6	15
92	Genomic insight into the developmental history of southern highbush blueberry populations. Heredity, 2021, 126, 194-205.	2.6	14
93	Growth Characteristics of a Small-fruit Dwarf Mutant Arising from Bud Sport Mutation in Japanese Persimmon (Diospyros kaki Thunb.). Hortscience: A Publication of the American Society for Hortcultural Science, 2008, 43, 1726-1730.	1.0	13
94	Simultaneous Visualization of 5S and 45S rDNAs in Persimmon (Diospyros kaki) and Several Wild Relatives (Diospyros spp.) by Fluorescent in situ Hybridization (FISH) and MultiColor FISH (MCFISH). Journal of the American Society for Horticultural Science, 2003, 128, 736-740.	1.0	13
95	Virus-induced gene silencing in various Prunus species with the Apple latent spherical virus vector. Scientia Horticulturae, 2016, 199, 103-113.	3.6	12
96	Epigenetic Flexibility Underlies Somaclonal Sex Conversions in Hexaploid Persimmon. Plant and Cell Physiology, 2020, 61, 393-402.	3.1	12
97	Highly Stable Regeneration from Long-term Cultures of Japanese Persimmon Callus. Hortscience: A Publication of the American Society for Hortcultural Science, 1992, 27, 1048.	1.0	12
98	Novel insights into the dissemination route of Japanese apricot (<i>Prunus mume</i> Sieb. et Zucc.) based on genomics. Plant Journal, 2022, 110, 1182-1197.	5.7	12
99	Production of dodecaploid plants of Japanese persimmon (Diospyros kaki L.) by colchicine treatment of protoplasts. Plant Cell Reports, 1996, 15, 470-473.	5.6	11
100	PCR markers for mutated S-haplotypes enable discrimination between self-incompatible and self-compatible sour cherry selections. Molecular Breeding, 2007, 21, 67-80.	2.1	11
101	Comparative Mapping of the <i>ASTRINGENCY</i> Locus Controlling Fruit Astringency in Hexaploid Persimmon (<i>Diospyros kaki</i> Thunb.) with the Diploid <i>D.Âlotus</i> Reference Genome. Horticulture Journal, 2018, 87, 315-323.	0.8	11
102	Comparison of Growth and Rooting Characteristics of Micropropagated Adult Plants and Juvenile Seedlings of Persimmon (Diospyros kaki L.). Journal of the Japanese Society for Horticultural Science, 1994, 63, 537-541.	0.5	11
103	Somatic embryogenesis and Agrobacterium-mediated transformation of Japanese apricot (Prunus) Tj ETQq1 1 0.	784314 rg 3.6	BT /Overloc
104	Expression Analysis of the LFY and TFL1 Homologs in Floral Buds of Japanese Pear (Pyrus pyrifolia) Tj ETQq0 0 0 r	gBT /Overl 0.8	ock 10 Tf 50
105	Characterization of a Novel Self-compatible S3′ Haplotype Leads to the Development of a Universal PCR Marker for Two Distinctly Originated Self-compatible S haplotypes in Japanese Apricot (Prunus mume) Tj ETQq1	1 00788431	4 ngBT /Ove
106	Blooming Date Predictions Based on Japanese Apricot â€~Nanko' Flower Bud Responses to Temperatures during Dormancy. Hortscience: A Publication of the American Society for Hortcultural Science, 2017, 52, 366-370.	1.0	9
107	Differences in Physiological Characteristics and Gene Expression Levels in Fruits between Japanese Persimmon (<i>Diospyros kaki</i> Thunb.) †Hiratanenashi' and Its Small Fruit Mutant †Totsutanenashi'. Horticulture Journal, 2016, 85, 306-314.	0.8	8
108	Molecular Mechanism Underlying Derepressed Male Production in Hexaploid Persimmon. Frontiers in Plant Science, 2020, 11, 567249.	3.6	8

#	Article	IF	CITATIONS
109	Genome-wide study on the polysomic genetic factors conferring plasticity of flower sexuality in hexaploid persimmon. DNA Research, 2020, 27, .	3.4	8
110	Improved Protoplast Culture and Plant Regeneration of Japanese Persimmon (Diospyros kaki L.) Breeding Science, 1993, 43, 239-245.	0.2	7
111	The Prunus Self-Incompatibility Locus (S locus) Is Seldom Rearranged. Journal of Heredity, 2008, 99, 657-660.	2.4	7
112	Characterization of Japanese Apricot (Prunus mume) Floral Bud Development Using a Modified BBCH Scale and Analysis of the Relationship between BBCH Stages and Floral Primordium Development and the Dormancy Phase Transition. Horticulturae, 2021, 7, 142.	2.8	7
113	The Relationship Between a Maleness-associated Region in <i>Diospyros lotus</i> L. and Maleness of Persimmon (<i>D. kaki</i> Thunb.) Cultivars. Horticultural Research (Japan), 2015, 14, 121-126.	0.1	7
114	Early Field Performance of Micropropagated Japanese Persimmon Trees. Hortscience: A Publication of the American Society for Hortcultural Science, 1998, 33, 751-753.	1.0	7
115	Production of dodecaploid plants of Japanese persimmon (Diospyros kaki L.) by colchicine treatment of protoplasts. Plant Cell Reports, 1996, 15, 470-473.	5.6	7
116	Genome-Wide Identification of Loci Associated With Phenology-Related Traits and Their Adaptive Variations in a Highbush Blueberry Collection. Frontiers in Plant Science, 2021, 12, 793679.	3.6	7
117	Effect of Cytokinin Types on the in vitro Propagation of Japanese Persimmon(Diospyros kaki Thunb.) Plant Tissue Culture Letters, 1991, 8, 209-211.	0.1	6
118	Quantitative analysis of auxin metabolites in lychee flowers. Bioscience, Biotechnology and Biochemistry, 2021, 85, 467-475.	1.3	4
119	Genomics-based discrimination of 2n gamete formation mechanisms in polyploids: a case study in nonaploid <i>Diospyros kaki</i> â€ĩAkiou'. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	4
120	A Simple and Rapid Procedure for the Detection of Self-Compatible Individuals in Japanese Apricot (Prunus mume Sieb. et Zucc.) Using the Loop-Mediated Isothermal Amplification (LAMP) Method. Hortscience: A Publication of the American Society for Hortcultural Science, 2006, 41, 1156-1158.	1.0	4
121	Insights into the Physiological and Molecular Mechanisms Underlying Highbush Blueberry Fruit Growth Affected by the Pollen Source. Horticulture Journal, 2022, 91, 140-151.	0.8	4
122	Distinguishing between Japanese persimmon cultivars (Diospyros kaki L.) by means of pollen isozymes. Scientia Horticulturae, 1988, 36, 67-77.	3.6	3
123	Improving Infection Efficiency of Agrobacterium to Immature Cotyledon Explants of Japanese Apricot (Prunus mume) by Sonication Treatment. Japanese Society for Horticultural Science, 2014, 83, 108-116.	0.8	3
124	Somatic Embryogenesis and Plant Regeneration from Immature Persimmon (Diospyros kaki Thunb.) Embryos. Hortscience: A Publication of the American Society for Hortcultural Science, 2008, 43, 211-214.	1.0	3
125	Factors Influencing Acclimatization of 'Nishimurawase' Japanese Persimmon Micropropagules and Their Field Performance Journal of the Japanese Society for Horticultural Science, 1993, 62, 533-538.	0.5	3
126	(280) Temporal and Spatial Expression of LEAFY and TERMINAL FLOWER 1 Homologues in Floral Bud of Japanese Pear and Quince. Hortscience: A Publication of the American Society for Hortcultural Science, 2006, 41, 1052B-1052.	1.0	2

#	Article	IF	CITATIONS
127	Characterization of Auxin Metabolism in the Ovaries of the Lychee (<i>Litchi chinensis</i>) †Salathiel'. Horticulture Journal, 2022, 91, 302-311.	0.8	1
128	Effect of Pollination with Nonaploid Persimmon Pollen on Fruit Set and Fruit Quality in ^ ^lsquo;Fuyu^ ^rsquo;, a Hexaploid Persimmon (Diospyros kaki Thunb.). Horticultural Research (Japan), 2012, 11, 485-489.	0.1	0
129	Production of Interspecific Hybrids of Persimmon by Protoplast Fusion. Hortscience: A Publication of the American Society for Hortcultural Science, 1997, 32, 442A-442.	1.0	Ο