
Nataliya V Maksimchuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1346217/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heterogeneous selective oxidation catalysts based on coordination polymer MIL-101 and transition metal-substituted polyoxometalates. Journal of Catalysis, 2008, 257, 315-323.	6.2	357
2	Hybrid Polyoxotungstate/MIL-101 Materials: Synthesis, Characterization, and Catalysis of H ₂ O ₂ -Based Alkene Epoxidation. Inorganic Chemistry, 2010, 49, 2920-2930.	4.0	228
3	Cyclohexane selective oxidation over metal–organic frameworks of MIL-101 family: superior catalytic activity and selectivity. Chemical Communications, 2012, 48, 6812.	4.1	175
4	Polyoxometalate-based heterogeneous catalysts for liquid phase selective oxidations: Comparison of different strategies. Catalysis Today, 2010, 157, 107-113.	4.4	133
5	Metal–organic frameworks of the MIL-101 family as heterogeneous single-site catalysts. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 2017-2034.	2.1	91
6	Heterogeneous Selective Oxidation of Alkenes to α,β―Unsaturated Ketones over Coordination Polymer MILâ€101. Advanced Synthesis and Catalysis, 2010, 352, 2943-2948.	4.3	84
7	HO-based allylic oxidation of -pinene over different single site catalysts. Journal of Catalysis, 2005, 235, 175-183.	6.2	76
8	Synthesis of cyclic carbonates from epoxides or olefins and CO2 catalyzed by metal-organic frameworks and quaternary ammonium salts. Journal of Energy Chemistry, 2013, 22, 130-135.	12.9	72
9	Aerobic oxidations of α-pinene over cobalt-substituted polyoxometalate supported on amino-modified mesoporous silicates. Journal of Catalysis, 2007, 246, 241-248.	6.2	71
10	MILâ€101 Supported Polyoxometalates: Synthesis, Characterization, and Catalytic Applications in Selective Liquidâ€Phase Oxidation. Israel Journal of Chemistry, 2011, 51, 281-289.	2.3	71
11	Highly Selective Oxidation of Alkylphenols to <i>p</i> Benzoquinones with Aqueous Hydrogen Peroxide Catalyzed by Divanadium-Substituted Polyoxotungstates. ACS Catalysis, 2014, 4, 2706-2713.	11.2	57
12	Relevance of Protons in Heterolytic Activation of H ₂ O ₂ over Nb(V): Insights from Model Studies on Nb-Substituted Polyoxometalates. ACS Catalysis, 2018, 8, 9722-9737.	11.2	52
13	Highly Selective H ₂ O ₂ â€Based Oxidation of Alkylphenols to <i>p</i> â€Benzoquinones Over MILâ€125 Metal–Organic Frameworks. European Journal of Inorganic Chemistry, 2014, 2014, 132-139.	2.0	50
14	Toward understanding the unusual reactivity of mesoporous niobium silicates in epoxidation of C C bonds with hydrogen peroxide. Journal of Catalysis, 2017, 356, 85-99.	6.2	50
15	One-step solvent-free synthesis of cyclic carbonates by oxidative carboxylation of styrenes over a recyclable Ti-containing catalyst. Applied Catalysis B: Environmental, 2016, 181, 363-370.	20.2	49
16	Mesoporous niobium-silicates prepared by evaporation-induced self-assembly as catalysts for selective oxidations with aqueous H2O2. Journal of Catalysis, 2015, 332, 138-148.	6.2	43
17	Protons Make Possible Heterolytic Activation of Hydrogen Peroxide over Zr-Based Metal–Organic Frameworks. ACS Catalysis, 2019, 9, 9699-9704.	11.2	41
18	Why Does Nb(V) Show Higher Heterolytic Pathway Selectivity Than Ti(IV) in Epoxidation with H ₂ O ₂ ? Answers from Model Studies on Nb- and Ti-Substituted Lindqvist Tungstates. ACS Catalysis, 2019, 9, 6262-6275.	11.2	36

#	Article	IF	CITATIONS
19	Metal-Organic Frameworks in Oxidation Catalysis with Hydrogen Peroxide. Catalysts, 2021, 11, 283.	3.5	34
20	Kinetic peculiarities of α-pinene oxidation by molecular oxygen. Applied Catalysis A: General, 2004, 272, 109-114.	4.3	31
21	Activation of H ₂ O ₂ over Zr(IV). Insights from Model Studies on Zr-Monosubstituted Lindqvist Tungstates. ACS Catalysis, 2021, 11, 10589-10603.	11.2	25
22	Kinetic peculiarities of cis/trans methyl oleate formation during hydrogenation of methyl linoleate over Pd/MgO. Applied Catalysis A: General, 2005, 279, 99-107.	4.3	23
23	Understanding the Regioselectivity of Aromatic Hydroxylation over Divanadium-Substituted γ-Keggin Polyoxotungstate. ACS Catalysis, 2017, 7, 8514-8523.	11.2	23
24	H2O2-based selective epoxidations: Nb-silicates versus Ti-silicates. Catalysis Today, 2019, 333, 63-70.	4.4	23
25	H2O2-based selective oxidations by divanadium-substituted polyoxotungstate supported on nitrogen-doped carbon nanomaterials. Catalysis Today, 2020, 354, 196-203.	4.4	20
26	Catalytic Performance of Zrâ€Based Metal–Organic Frameworks Zrâ€abtc and MIPâ€200 in Selective Oxidations with H ₂ O ₂ . Chemistry - A European Journal, 2021, 27, 6985-6992.	3.3	20
27	Cyclohexene Oxidation with H2O2 over Metal-Organic Framework MIL-125(Ti): The Effect of Protons on Reactivity. Catalysts, 2019, 9, 324.	3.5	15
28	Thioether Oxidation with H ₂ O ₂ Catalyzed by Nb‣ubstituted Polyoxotungstates: Mechanistic Insights. European Journal of Inorganic Chemistry, 2019, 2019, 410-416.	2.0	13
29	Environmentally Benign Oxidation of Alkylphenols to p-Benzoquinones: A Comparative Study of Various Ti-Containing Catalysts. Topics in Catalysis, 2014, 57, 1377-1384.	2.8	11
30	Titanium-silica catalyst derived from defined metallic titanium cluster precursor: Synthesis and catalytic properties in selective oxidations. Inorganica Chimica Acta, 2018, 470, 393-401.	2.4	11
31	Heterolytic alkene oxidation with H ₂ O ₂ catalyzed by Nb-substituted Lindqvist tungstates immobilized on carbon nanotubes. Catalysis Science and Technology, 2021, 11, 3198-3207.	4.1	11
32	Tungsten-Based Mesoporous Silicates W-MMM-E as Heterogeneous Catalysts for Liquid-Phase Oxidations with Aqueous H2O2. Catalysts, 2018, 8, 95.	3.5	9
33	Alkene Epoxidation and Thioether Oxidation with Hydrogen Peroxide Catalyzed by Mesoporous Zirconium-Silicates. Catalysts, 2022, 12, 742.	3.5	7
34	Kinetic study on isomerization of verbenol to isopiperitenol and citral. Reaction Kinetics and Catalysis Letters, 2004, 82, 165-172.	0.6	5