
Heikki Rauvala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1345820/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low-Molecular Weight Protamine Overcomes Chondroitin Sulfate Inhibition of Neural Regeneration. Frontiers in Cell and Developmental Biology, 2022, 10, 865275.	3.7	2
2	Protective Role of Low Ethanol Administration Following Ischemic Stroke via Recovery of KCC2 and p75NTR Expression. Molecular Neurobiology, 2021, 58, 1145-1161.	4.0	5
3	Heparin-Binding Growth-Associated Molecule (Pleiotrophin) Affects Sensory Signaling and Selected Motor Functions in Mouse Model of Anatomically Incomplete Cervical Spinal Cord Injury. Frontiers in Neurology, 2021, 12, 738800.	2.4	1
4	Regulation of Neurogenesis in Mouse Brain by HMGB1. Cells, 2020, 9, 1714.	4.1	17
5	Impact of JNK and Its Substrates on Dendritic Spine Morphology. Cells, 2020, 9, 440.	4.1	13
6	Quantitative changes in perineuronal nets in development and posttraumatic condition. Journal of Molecular Histology, 2019, 50, 203-216.	2.2	18
7	Inhibition of Homophilic Interactions and Ligand Binding of the Receptor for Advanced Glycation End Products by Heparin and Heparin-Related Carbohydrate Structures. Medicines (Basel, Switzerland), 2018, 5, 79.	1.4	4
8	Kv2 Ion Channels Determine the Expression and Localization of the Associated AMIGO-1 Cell Adhesion Molecule in Adult Brain Neurons. Frontiers in Molecular Neuroscience, 2018, 11, 1.	2.9	151
9	AMIGO2 modulates T cell functions and its deficiency in mice ameliorates experimental autoimmune encephalomyelitis. Brain, Behavior, and Immunity, 2017, 62, 110-123.	4.1	6
10	Reversible Disruption of Neuronal Mitochondria by Ischemic and Traumatic Injury Revealed by Quantitative Two-Photon Imaging in the Neocortex of Anesthetized Mice. Journal of Neuroscience, 2017, 37, 333-348.	3.6	50
11	Reversible Disruption of Neuronal Mitochondria by Ischemic and Traumatic Injury Revealed by Quantitative Two-Photon Imaging in the Neocortex of Anesthetized Mice. Journal of Neuroscience, 2017, 37, 333-348.	3.6	9
12	Inhibition and enhancement of neural regeneration by chondroitin sulfate proteoglycans. Neural Regeneration Research, 2017, 12, 687.	3.0	31
13	AMIGO-Kv2.1 Potassium Channel Complex is Associated With Schizophrenia-Related Phenotypes. Schizophrenia Bulletin, 2016, 42, sbv105.	4.3	25
14	Spatial patterns and cell surface clusters in perineuronal nets. Brain Research, 2016, 1648, 214-223.	2.2	11
15	HB-GAM (pleiotrophin) reverses inhibition of neural regeneration by the CNS extracellular matrix. Scientific Reports, 2016, 6, 33916.	3.3	43
16	HMGB4 is expressed by neuronal cells and affects the expression of genes involved in neural differentiation. Scientific Reports, 2016, 6, 32960.	3.3	14
17	Circulating nucleosomes as predictive markers of severe acute pancreatitis. Journal of Intensive Care, 2016, 4, 14.	2.9	22
18	Axonal Amphoterin mRNA Is Regulated by Translational Control and Enhances Axon Outgrowth. Journal of Neuroscience, 2015, 35, 5693-5706.	3.6	32

Heikki Rauvala

#	Article	IF	CITATIONS
19	Association of brain immune genes with social behavior of inbred mouse strains. Journal of Neuroinflammation, 2015, 12, 75.	7.2	20
20	Mice Deficient in Transmembrane Prostatic Acid Phosphatase Display Increased GABAergic Transmission and Neurological Alterations. PLoS ONE, 2014, 9, e97851.	2.5	9
21	JNK1 controls dendritic field size in L2/3 and L5 of the motor cortex, constrains soma size, and influences fine motor coordination. Frontiers in Cellular Neuroscience, 2014, 8, 272.	3.7	32
22	HMGB1 Contributes to Regeneration After Spinal Cord Injury in Adult Zebrafish. Molecular Neurobiology, 2014, 49, 472-483.	4.0	76
23	Acute Brain Trauma in Mice Followed By Longitudinal Two-photon Imaging. Journal of Visualized Experiments, 2014, , .	0.3	4
24	Flat-floored Air-lifted Platform: A New Method for Combining Behavior with Microscopy or Electrophysiology on Awake Freely Moving Rodents. Journal of Visualized Experiments, 2014, , e51869.	0.3	44
25	Heparan sulfate proteoglycan syndecan-3 is a novel receptor for GDNF, neurturin, and artemin. Journal of Cell Biology, 2011, 192, 153-169.	5.2	164
26	Physiological and pathophysiological outcomes of the interactions of HMGB1 with cell surface receptors. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2010, 1799, 164-170.	1.9	94
27	RACE as a Receptor of HMGB1 (Amphoterin): Roles in Health and Disease. Current Molecular Medicine, 2007, 7, 725-734.	1.3	92
28	Regulation of monocyte migration by amphoterin (HMGB1). Blood, 2004, 104, 1174-1182.	1.4	234
29	Receptor for Advanced Glycation End Products (RAGE) Signaling Induces CREB-dependent Chromogranin Expression during Neuronal Differentiation. Journal of Biological Chemistry, 2002, 277, 38635-38646.	3.4	152
30	Role of Heparin-Binding Growth-Associated Molecule (HB-GAM) in Hippocampal LTP and Spatial Learning Revealed by Studies on Overexpressing and Knockout Mice. Molecular and Cellular Neurosciences, 2002, 20, 330-342.	2.2	85
31	Ultrastructural Localization of β-Actin and Amphoterin mRNA in Cultured Cells: Application of Tyramide Signal Amplification and Comparison of Detection Methods. Journal of Histochemistry and Cytochemistry, 1999, 47, 99-112.	2.5	21
32	Receptor for Advanced Glycation End Products (RAGE)-mediated Neurite Outgrowth and Activation of NF-κB Require the Cytoplasmic Domain of the Receptor but Different Downstream Signaling Pathways. Journal of Biological Chemistry, 1999, 274, 19919-19924.	3.4	570
33	High Affinity Binding and Overlapping Localization of Neurocan and Phosphacan/Protein-tyrosine Phosphatase-ζĴl² with Tenascin-R, Amphoterin, and the Heparin-binding Growth-associated Molecule. Journal of Biological Chemistry, 1998, 273, 6998-7005.	3.4	166
34	Neurite Outgrowth in Brain Neurons Induced by Heparin-binding Growth-associated Molecule (HB-GAM) Depends on the Specific Interaction of HB-GAM with Heparan Sulfate at the Cell Surface. Journal of Biological Chemistry, 1996, 271, 2243-2248.	3.4	112
35	Expression of HB-GAM (heparin-binding growth-associated molecules) in the pathways of developing axonal processes in vivo and neurite outgrowth in vitro induced by HB-GAM. Developmental Brain Research, 1994, 79, 157-176.	1.7	88