
Xin-Xin Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1344839/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crystal plane induced in-situ electrochemical activation of manganese-based cathode enable long-term aqueous zinc-ion batteries. Green Energy and Environment, 2023, 8, 1429-1436.	8.7	20
2	Vanadiumâ€modified hard carbon spheres with sufficient pseudographitic domains as highâ€performance anode for sodiumâ€ion batteries. , 2023, 5, .		30
3	Fundamental Understanding and Effect of Anionic Chemistry in Zinc Batteries. Energy and Environmental Materials, 2022, 5, 186-200.	12.8	18
4	Organic–Inorganic Hybrid Cathode with Dual Energyâ€Storage Mechanism for Ultrahighâ€Rate and Ultralongâ€Life Aqueous Zincâ€Ion Batteries. Advanced Materials, 2022, 34, e2105452.	21.0	129
5	Ion migration and defect effect of electrode materials in multivalent-ion batteries. Progress in Materials Science, 2022, 125, 100911.	32.8	79
6	Synergetic stability enhancement with magnesium and calcium ion substitution for Ni/Mn-based P2-type sodium-ion battery cathodes. Chemical Science, 2022, 13, 726-736.	7.4	54
7	Enabling high-performance Na4MnV(PO4)3 cathode via synergetic strategy of carbon encapsulation and nanoengineering. Journal of Power Sources, 2022, 521, 230974.	7.8	17
8	Hydrogen Bondâ€Functionalized Massive Solvation Modules Stabilizing Bilateral Interfaces. Advanced Functional Materials, 2022, 32, .	14.9	82
9	Construction of Na3V2(PO4)2F3@C/CNTs nanocomposites with three-dimensional conductive network as cathode materials for sodium-ion batteries. Journal of Electroanalytical Chemistry, 2022, 920, 116613.	3.8	8
10	Suppressing by-product via stratified adsorption effect to assist highly reversible zinc anode in aqueous electrolyte. Journal of Energy Chemistry, 2021, 55, 549-556.	12.9	132
11	Melamine-assisted synthesis of ultrafine Mo2C/Mo2N@N-doped carbon nanofibers for enhanced alkaline hydrogen evolution reaction activity. Science China Materials, 2021, 64, 1150-1158.	6.3	25
12	Perspective on the synergistic effect of chalcogenide multiphases in sodium-ion batteries. Materials Chemistry Frontiers, 2021, 5, 1694-1715.	5.9	22
13	Agitation drying synthesis of porous carbon supported Li3VO4 as advanced anode material for lithium-ion batteries. Rare Metals, 2021, 40, 3466-3476.	7.1	20
14	Surfaceâ€Preferred Crystal Plane for a Stable and Reversible Zinc Anode. Advanced Materials, 2021, 33, e2100187.	21.0	432
15	Layered Barium Vanadate Cathodes for Aqueous Zinc Batteries: Enhancing Cycling Stability through Inhibition of Vanadium Dissolution. ACS Applied Energy Materials, 2021, 4, 6197-6204.	5.1	18
16	Antiâ€Corrosive and Znâ€Ionâ€Regulating Composite Interlayer Enabling Longâ€Life Zn Metal Anodes. Advanced Functional Materials, 2021, 31, 2104361.	14.9	135
17	Pseudocapacitance-dominated zinc storage enabled by nitrogen-doped carbon stabilized amorphous vanadyl phosphate. Chemical Engineering Journal, 2021, 426, 131868.	12.7	20
18	Copper-Stabilized Pâ€22-Type Layered Manganese Oxide Cathodes for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 58665-58673.	8.0	24

#	Article	IF	CITATIONS
19	In situ formation of porous LiCuVO4/LiVO3/C nanotubes as a high-capacity anode material for lithium ion batteries. Inorganic Chemistry Frontiers, 2020, 7, 340-346.	6.0	19
20	Sulfurâ€Doped Carbonâ€Wrapped Heterogeneous Fe ₃ O ₄ /Fe ₇ S ₈ /C Nanoplates as Stable Anode for Lithiumâ€Ion Batteries. Batteries and Supercaps, 2020, 3, 344-353.	4.7	25
21	Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy and Environmental Science, 2020, 13, 4625-4665.	30.8	497
22	Carbon quantum dot modified Na ₃ V ₂ (PO ₄) ₂ F ₃ as a high-performance cathode material for sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 18872-18879.	10.3	59
23	Interlayer Doping in Layered Vanadium Oxides for Lowâ€cost Energy Storage: Sodiumâ€ion Batteries and Aqueous Zincâ€ion Batteries. ChemNanoMat, 2020, 6, 1553-1566.	2.8	49
24	Tuning crystal structure and redox potential of NASICON-type cathodes for sodium-ion batteries. Nano Research, 2020, 13, 3330-3337.	10.4	49
25	Tuning Interface Bridging Between MoSe2 and Three-Dimensional Carbon Framework by Incorporation of MoC Intermediate to Boost Lithium Storage Capability. Nano-Micro Letters, 2020, 12, 171.	27.0	53
26	Electrochemical Activation of Manganeseâ€Based Cathode in Aqueous Zincâ€Ion Electrolyte. Advanced Functional Materials, 2020, 30, 2002711.	14.9	120
27	Sulfurâ€Doped Carbonâ€Wrapped Heterogeneous Fe 3 O 4 /Fe 7 S 8 /C Nanoplates as Stable Anode for Lithiumâ€Ion Batteries. Batteries and Supercaps, 2020, 3, 308-308.	4.7	3
28	Tin sulfide nanoparticles embedded in sulfur and nitrogen dual-doped mesoporous carbon fibers as high-performance anodes with battery-capacitive sodium storage. Energy Storage Materials, 2019, 18, 366-374.	18.0	101
29	Bimetallic phosphides embedded in hierarchical P-doped carbon for sodium ion battery and hydrogen evolution reaction applications. Science China Materials, 2019, 62, 1857-1867.	6.3	23
30	Binding MoSe ₂ with dual protection carbon for high-performance sodium storage. Journal of Materials Chemistry A, 2019, 7, 22871-22878.	10.3	69
31	Construction of V2O5/NaV6O15 biphase composites as aqueous zinc-ion battery cathode. Journal of Electroanalytical Chemistry, 2019, 847, 113246.	3.8	27
32	Trimetallic Hybrid Sulfides Embedded in Nitrogen-Doped Carbon Nanocubes as an Advanced Sodium-Ion Battery Anode. ACS Applied Energy Materials, 2019, 2, 4567-4575.	5.1	28
33	Towards a durable high performance anode material for lithium storage: stabilizing N-doped carbon encapsulated FeS nanosheets with amorphous TiO ₂ . Journal of Materials Chemistry A, 2019, 7, 16541-16552.	10.3	30
34	Synthesis of polycrystalline K0.25V2O5 nanoparticles as cathode for aqueous zinc-ion battery. Journal of Alloys and Compounds, 2019, 801, 82-89.	5.5	56
35	Transition metal ion-preintercalated V2O5 as high-performance aqueous zinc-ion battery cathode with broad temperature adaptability. Nano Energy, 2019, 61, 617-625.	16.0	340
36	Nanoflake-constructed porous Na3V2(PO4)3/C hierarchical microspheres as a bicontinuous cathode for sodium-ion batteries applications. Nano Energy, 2019, 60, 312-323.	16.0	154

#	Article	IF	CITATIONS
37	Reversible Zn-driven reduction displacement reaction in aqueous zinc-ion battery. Journal of Materials Chemistry A, 2019, 7, 7355-7359.	10.3	84
38	Vertically oriented Sn ₃ O ₄ nanoflakes directly grown on carbon fiber cloth for high-performance lithium storage. Inorganic Chemistry Frontiers, 2019, 6, 1468-1474.	6.0	14
39	Investigation of sodium vanadate as a high-performance aqueous zinc-ion battery cathode. Journal of Energy Chemistry, 2019, 37, 172-175.	12.9	29
40	Suppressing Manganese Dissolution in Potassium Manganate with Rich Oxygen Defects Engaged Highâ€Energyâ€Density and Durable Aqueous Zincâ€ion Battery. Advanced Functional Materials, 2019, 29, 1808375.	14.9	568
41	Hierarchical mesoporous MoSe2@CoSe/N-doped carbon nanocomposite for sodium ion batteries and hydrogen evolution reaction applications. Energy Storage Materials, 2019, 21, 97-106.	18.0	128
42	Uniform MnCo ₂ O ₄ Porous Dumbbells for Lithium-Ion Batteries and Oxygen Evolution Reactions. ACS Applied Materials & Interfaces, 2018, 10, 8730-8738.	8.0	83
43	Hierarchically carbon-coated Na3V2(PO4)3 nanoflakes for high-rate capability and ultralong cycle-life sodium ion batteries. Chemical Engineering Journal, 2018, 339, 162-169.	12.7	67
44	Nanoflake-assembled three-dimensional Na3V2(PO4)3/C cathode for high performance sodium ion batteries. Chemical Engineering Journal, 2018, 335, 301-308.	12.7	57
45	Carbon-encapsulated MoSe2/C nanorods derived from organic-inorganic hybrid enabling superior lithium/sodium storageÂperformances. Electrochimica Acta, 2018, 292, 339-346.	5.2	40
46	<i>In situ</i> formation of porous graphitic carbon wrapped MnO/Ni microsphere networks as binder-free anodes for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 12316-12322.	10.3	23
47	Sodiumâ€Ion Batteries: Observation of Pseudocapacitive Effect and Fast Ion Diffusion in Bimetallic Sulfides as an Advanced Sodiumâ€Ion Battery Anode (Adv. Energy Mater. 19/2018). Advanced Energy Materials, 2018, 8, 1870092.	19.5	9
48	Caging Na ₃ V ₂ (PO ₄) ₂ F ₃ Microcubes in Crossâ€Linked Graphene Enabling Ultrafast Sodium Storage and Longâ€Term Cycling. Advanced Science, 2018, 5, 1800680.	11.2	182
49	Encapsulation of CoS <i>_x</i> Nanocrystals into N/S Coâ€Doped Honeycombâ€Like 3D Porous Carbon for Highâ€Performance Lithium Storage. Advanced Science, 2018, 5, 1800829.	11.2	172
50	Electrospun Single Crystalline Fork-Like K2V8O21 as High-Performance Cathode Materials for Lithium-Ion Batteries. Frontiers in Chemistry, 2018, 6, 195.	3.6	34
51	Observation of Pseudocapacitive Effect and Fast Ion Diffusion in Bimetallic Sulfides as an Advanced Sodiumâ€ion Battery Anode. Advanced Energy Materials, 2018, 8, 1703155.	19.5	374
52	Self-templated synthesis of N-doped CoSe2/C double-shelled dodecahedra for high-performance supercapacitors. Energy Storage Materials, 2017, 8, 28-34.	18.0	107
53	Graphene oxide templated nitrogen-doped carbon nanosheets with superior rate capability for sodium ion batteries. Carbon, 2017, 122, 82-91.	10.3	43
54	Chemical Synthesis of 3D Graphene‣ike Cages for Sodium″on Batteries Applications. Advanced Energy Materials, 2017, 7, 1700797.	19.5	113

#	Article	IF	CITATIONS
55	Nanorod-Nanoflake Interconnected LiMnPO ₄ ·Li ₃ V ₂ (PO ₄) ₃ /C Composite for High-Rate and Long-Life Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 27632-27641.	8.0	44
56	Uniform 8LiFePO 4 ·Li 3 V 2 (PO 4) 3 /C nanoflakes for high-performance Li-ion batteries. Nano Energy, 2016, 22, 48-58.	16.0	80
57	Facile synthesis of potassium vanadate cathode material with superior cycling stability for lithium ion batteries. Journal of Power Sources, 2015, 275, 694-701.	7.8	55