
William E Mustain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1343245/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding and improving anode performance in an alkaline membrane electrolyzer using statistical design of experiments. Electrochimica Acta, 2022, 409, 140001.	5.2	22
2	KOH vs Deionized Water Operation in Anion Exchange Membrane Electrolyzers. Journal of the Electrochemical Society, 2022, 169, 044526.	2.9	24
3	Understanding Recoverable vs Unrecoverable Voltage Losses and Long-Term Degradation Mechanisms in Anion Exchange Membrane Fuel Cells. ACS Catalysis, 2022, 12, 8116-8126.	11.2	10
4	Stable, high-performing bifunctional electrodes for anion exchange membrane-based unitized regenerative fuel cells. Journal of Power Sources, 2022, 541, 231599.	7.8	5
5	Practical assessment of the performance of aluminium battery technologies. Nature Energy, 2021, 6, 21-29.	39.5	122
6	Structure and chemistry of the solid electrolyte interphase (SEI) on a high capacity conversion-based anode: NiO. Journal of Materials Chemistry A, 2021, 9, 523-537.	10.3	15
7	Effect of Membrane Properties on the Carbonation of Anion Exchange Membrane Fuel Cells. Membranes, 2021, 11, 102.	3.0	13
8	lonomer Optimization for Water Uptake and Swelling in Anion Exchange Membrane Electrolyzer: Hydrogen Evolution Electrode. Journal of the Electrochemical Society, 2021, 168, 024503.	2.9	31
9	Editors' Choice—Power-Generating Electrochemical CO ₂ Scrubbing from Air Enabling Practical AEMFC Application. Journal of the Electrochemical Society, 2021, 168, 024504.	2.9	9
10	Editors' Choice—Examining Performance and Durability of Anion Exchange Membrane Fuel Cells with Novel Spirocyclic Anion Exchange Membranes. Journal of the Electrochemical Society, 2021, 168, 044525.	2.9	14
11	Large Scale Synthesis of Manganese Oxide/Reduced Graphene Oxide Composites as Anode Materials for Long Cycle Lithium Ion Batteries. ACS Applied Energy Materials, 2021, 4, 5424-5433.	5.1	16
12	High-performing commercial Fe–N–C cathode electrocatalyst for anion-exchange membrane fuel cells. Nature Energy, 2021, 6, 834-843.	39.5	238
13	Influence of Preparation Conditions on Platinum and Palladium Catalysts Supported on Anodically Oxidized Stainless Steel Wire Meshes for CO Oxidation. Emission Control Science and Technology, 2021, 7, 210-221.	1.5	2
14	Partial deployment of Al in Zn–MnO2 alkaline battery anodes to improve the capacity and reversibility. Journal of Power Sources, 2021, 506, 230167.	7.8	4
15	Understanding how single-atom site density drives the performance and durability of PGM-free Fe–N–C cathodes in anion exchange membrane fuel cells. Materials Today Advances, 2021, 12, 100179.	5.2	18
16	The Importance of Water Transport in High Conductivity and High-Power Alkaline Fuel Cells. Journal of the Electrochemical Society, 2020, 167, 054501.	2.9	132
17	Non-destructive parameter extraction for a reduced order lumped electrochemical-thermal model for simulating Li-ion full-cells. Journal of Power Sources, 2020, 445, 227296.	7.8	25
18	Rational Synthesis of Metallo-Cations Toward Redox- and Alkaline-Stable Metallo-Polyelectrolytes. Journal of the American Chemical Society, 2020, 142, 1083-1089.	13.7	91

#	Article	IF	CITATIONS
19	Catalytic Advantages, Challenges, and Priorities in Alkaline Membrane Fuel Cells. ACS Catalysis, 2020, 10, 225-234.	11.2	190
20	Using operando techniques to understand and design high performance and stable alkaline membrane fuel cells. Nature Communications, 2020, 11, 3561.	12.8	113
21	Poly(norbornene) anion conductive membranes: homopolymer, block copolymer and random copolymer properties and performance. Journal of Materials Chemistry A, 2020, 8, 17568-17578.	10.3	105
22	Achieving Highâ€Performance and 2000 h Stability in Anion Exchange Membrane Fuel Cells by Manipulating lonomer Properties and Electrode Optimization. Advanced Energy Materials, 2020, 10, 2001986.	19.5	188
23	Improving alkaline ionomers. Nature Energy, 2020, 5, 359-360.	39.5	25
24	Electrospun nanofibers with surface oriented lamellar patterns and their potential applications. Nanoscale, 2020, 12, 12993-13000.	5.6	6
25	Design of Highly Reversible Zinc Anodes for Aqueous Batteries Using Preferentially Oriented Electrolytic Zinc. Batteries and Supercaps, 2020, 3, 1220-1232.	4.7	7
26	Catalysts for Polymer Membrane Fuel Cells. Catalysts, 2020, 10, 86.	3.5	7
27	Low-Temperature Lithium Plating/Corrosion Hazard in Lithium-Ion Batteries: Electrode Rippling, Variable States of Charge, and Thermal and Nonthermal Runaway. ACS Applied Energy Materials, 2020, 3, 3653-3664.	5.1	37
28	Durability challenges of anion exchange membrane fuel cells. Energy and Environmental Science, 2020, 13, 2805-2838.	30.8	393
29	Investigation of Transport and Kinetic Nonideality in Solid Li-Ion Electrodes through Deconvolution of Electrochemical Impedance Spectra. Journal of the Electrochemical Society, 2020, 167, 020523.	2.9	12
30	Using nanoconfinement to inhibit the degradation pathways of conversion-metal oxide anodes for highly stable fast-charging Li-ion batteries. Journal of Materials Chemistry A, 2020, 8, 2712-2727.	10.3	32
31	High Performance FeNC and Mn-oxide/FeNC Layers for AEMFC Cathodes. Journal of the Electrochemical Society, 2020, 167, 134505.	2.9	49
32	Ionomer Optimization for Water Uptake and Swelling in Anion Exchange Membrane Electrolyzer: Oxygen Evolution Electrode. Journal of the Electrochemical Society, 2020, 167, 164514.	2.9	40
33	Composite Materials with Combined Electronic and Ionic Properties. Matter, 2019, 1, 959-975.	10.0	32
34	Quantifying and elucidating the effect of CO ₂ on the thermodynamics, kinetics and charge transport of AEMFCs. Energy and Environmental Science, 2019, 12, 2806-2819.	30.8	74
35	In-depth structural understanding of zinc oxide addition to alkaline electrolytes to protect aluminum against corrosion and gassing. Journal of Applied Electrochemistry, 2019, 49, 895-907.	2.9	13
36	Predicting the Effects of Carbon Dioxide on the Conductivity of Electrospun Anion Exchange Membranes. Journal of the Electrochemical Society, 2019, 166, F1047-F1054.	2.9	4

#	Article	IF	CITATIONS
37	Poly(bis-arylimidazoliums) possessing high hydroxide ion exchange capacity and high alkaline stability. Nature Communications, 2019, 10, 2306.	12.8	239
38	Composite Poly(norbornene) Anion Conducting Membranes for Achieving Durability, Water Management and High Power (3.4ÂW/cm ²) in Hydrogen/Oxygen Alkaline Fuel Cells. Journal of the Electrochemical Society, 2019, 166, F637-F644.	2.9	172
39	Poly(olefin)-Based Anion Exchange Membranes Prepared Using Ziegler–Natta Polymerization. Macromolecules, 2019, 52, 4030-4041.	4.8	92
40	High Performance Anion Exchange Membrane Fuel Cells Enabled by Fluoropoly(olefin) Membranes. Advanced Functional Materials, 2019, 29, 1902059.	14.9	128
41	Radiation-grafted anion-exchange membranes: the switch from low- to high-density polyethylene leads to remarkably enhanced fuel cell performance. Energy and Environmental Science, 2019, 12, 1575-1579.	30.8	223
42	High-Performing PGM-Free AEMFC Cathodes from Carbon-Supported Cobalt Ferrite Nanoparticles. Catalysts, 2019, 9, 264.	3.5	53
43	Nitrogenâ€doped Carbon–CoO _{<i>x</i>} Nanohybrids: A Precious Metal Free Cathode that Exceeds 1.0â€W cm ^{â^'2} Peak Power and 100â€h Life in Anionâ€Exchange Membrane Fuel C Angewandte Chemie, 2019, 131, 1058-1063.	Cellao	32
44	Nitrogenâ€doped Carbon–CoO _{<i>x</i>} Nanohybrids: A Precious Metal Free Cathode that Exceeds 1.0â€W cm ^{â^'2} Peak Power and 100â€h Life in Anionâ€Exchange Membrane Fuel C Angewandte Chemie - International Edition, 2019, 58, 1046-1051.	Ce lls. 8	117
45	Explaining the role and mechanism of carbon matrices in enhancing reaction reversibility of metal oxide anodes for high performance Li ion batteries. Carbon, 2018, 130, 515-524.	10.3	21
46	Recent progress and perspectives of bifunctional oxygen reduction/evolution catalyst development for regenerative anion exchange membrane fuel cells. Nano Energy, 2018, 47, 172-198.	16.0	134
47	The Effect of Ambient Carbon Dioxide on Anionâ€Exchange Membrane Fuel Cells. ChemSusChem, 2018, 11, 1136-1150.	6.8	137
48	Beyond catalysis and membranes: visualizing and solving the challenge of electrode water accumulation and flooding in AEMFCs. Energy and Environmental Science, 2018, 11, 551-558.	30.8	229
49	Preferentially Oriented Ag Nanocrystals with Extremely High Activity and Faradaic Efficiency for CO ₂ Electrochemical Reduction to CO. ACS Applied Materials & Interfaces, 2018, 10, 1734-1742.	8.0	105
50	Improved Capacity Retention of Metal Oxide Anodes in Liâ€lon Batteries: Increasing Intraparticle Electronic Conductivity through Na Inclusion in Mn 3 O 4. ChemElectroChem, 2018, 5, 2059-2063.	3.4	8
51	Water and Ion Transport in Anion Exchange Membrane Fuel Cells. Lecture Notes in Energy, 2018, , 1-31.	0.3	4
52	Cobalt Doping as a Pathway To Stabilize the Solid-State Conversion Chemistry of Manganese Oxide Anodes in Li-Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 7120-7127.	3.1	10
53	Understanding how high-performance anion exchange membrane fuel cells were achieved: Component, interfacial, and cell-level factors. Current Opinion in Electrochemistry, 2018, 12, 233-239.	4.8	91
54	Beyond 1.0ÂW cm ^{â^'2} Performance without Platinum: The Beginning of a New Era in Anion Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 2018, 165, J3039-J3044.	2.9	91

#	Article	IF	CITATIONS
55	Strategies for Reducing the PGM Loading in High Power AEMFC Anodes. Journal of the Electrochemical Society, 2018, 165, F710-F717.	2.9	48
56	Strategies for Reducing the PGM Loading in High Power AEMFC Anodes. ECS Transactions, 2018, 85, 873-887.	0.5	2
57	(Invited) Electrochemical Pathways for Electrochemical Oxidation of Acetic Acid. ECS Transactions, 2018, 85, 29-34.	0.5	2
58	Understanding the Dynamics of Primary Zn-MnO ₂ Alkaline Battery Gassing with Operando Visualization and Pressure Cells. Journal of the Electrochemical Society, 2018, 165, A2528-A2535.	2.9	34
59	(Invited) Reaching New Heights in Anion Exchange Membrane Fuel Cell Performance and Stability: Catalysts, Membranes, Water, and Beyond. ECS Meeting Abstracts, 2018, , .	0.0	2
60	Carbonate Dynamics and Opportunities With Low Temperature, Anion Exchange Membrane-Based Electrochemical Carbon Dioxide Separators. Journal of Electrochemical Energy Conversion and Storage, 2017, 14, .	2.1	25
61	Modeling Nickel Oxide Particle Stress Behavior Induced by Lithiation Using a FEM Linear Elastic Approach. Journal of the Electrochemical Society, 2017, 164, A867-A873.	2.9	1
62	Activity and durability of Pt-Ni nanocage electocatalysts in proton exchange membrane fuel cells. Applied Catalysis B: Environmental, 2017, 203, 927-935.	20.2	90
63	Effect of cobalt alloying on the electrochemical performance of manganese oxide nanoparticles nucleated on multiwalled carbon nanotubes. Nanotechnology, 2017, 28, 155403.	2.6	10
64	Highly active and durable Pd-Cu catalysts for oxygen reduction in alkaline exchange membrane fuel cells. Frontiers in Energy, 2017, 11, 299-309.	2.3	37
65	Highly durable and active Co3O4 nanocrystals supported on carbon nanotubes as bifunctional electrocatalysts in alkaline media. Applied Catalysis B: Environmental, 2017, 203, 138-145.	20.2	75
66	An optimised synthesis of high performance radiation-grafted anion-exchange membranes. Green Chemistry, 2017, 19, 831-843.	9.0	141
67	Approaching 2 Wâ^™cm-2 AEMFCs through Electrode Engineering and Controlling the Cell Water Content and Balance. ECS Meeting Abstracts, 2017, , .	0.0	1
68	Improving Performance in Alkaline Membrane Fuel Cells through Enhanced Water Management. ECS Transactions, 2016, 75, 949-954.	0.5	11
69	High Performance Bi-Metallic Manganese Cobalt Oxide/Carbon Nanotube Li-ion Battery Anodes. Electrochimica Acta, 2016, 213, 620-625.	5.2	13
70	Highly Conductive In-SnO2/RGO Nano-Heterostructures with Improved Lithium-Ion Battery Performance. Scientific Reports, 2016, 6, 25860.	3.3	34
71	Fabrication of High Performing PEMFC Catalyst-Coated Membranes with a Low Cost Air-Assisted Cylindrical Liquid Jets Spraying System. Journal of the Electrochemical Society, 2016, 163, E407-E413.	2.9	22
72	High-rate and long-life of Li-ion batteries using reduced graphene oxide/Co ₃ O ₄ as anode materials. RSC Advances, 2016, 6, 24320-24330.	3.6	25

#	Article	IF	CITATIONS
73	Reaction Dependent Transport of Carbonate and Bicarbonate through Anion Exchange Membranes in Electrolysis and Fuel Cell Operations. ECS Transactions, 2015, 69, 1-9.	0.5	4
74	Ultra-Low Pt Loading Catalyst Layers for PEMFC Using Reactive Spray Deposition Technology. ECS Transactions, 2015, 69, 487-496.	0.5	11
75	In Situ Oxygen Gradient Generation Inside a Termite-Inspired Microfluidic Habitat. ECS Transactions, 2015, 66, 1-5.	0.5	Ο
76	Application of a Coated Film Catalyst Layer Model to a High Temperature Polymer Electrolyte Membrane Fuel Cell with Low Catalyst Loading Produced by Reactive Spray Deposition Technology. Catalysts, 2015, 5, 1673-1691.	3.5	12
77	Metal Oxide/Reduced Graphene Oxide Anodes for Lithium-Ion Batteries. ECS Transactions, 2015, 66, 47-55.	0.5	5
78	Stability and Activity of Pt/ITO Electrocatalyst for Oxygen Reduction Reaction in Alkaline Media. Electrochimica Acta, 2015, 157, 175-182.	5.2	38
79	Importance of Particle Size and Distribution in Achieving High-Activity, High-Stability Oxygen Reduction Catalysts. ACS Catalysis, 2015, 5, 1560-1567.	11.2	30
80	Influence of the ionomer/carbon ratio for low-Pt loading catalyst layer prepared by reactive spray deposition technology. Journal of Power Sources, 2015, 283, 84-94.	7.8	78
81	Two Pathways for Near Room Temperature Electrochemical Conversion of Methane to Methanol. ECS Transactions, 2015, 66, 129-136.	0.5	20
82	Determining the Electrochemically Active Area of IrO _x Powder Catalysts in an Operating Proton Exchange Membrane Electrolyzer. ECS Transactions, 2015, 69, 877-881.	0.5	6
83	Influence of conductivity on the capacity retention of NiO anodes in Li-ion batteries. Journal of Power Sources, 2015, 276, 46-53.	7.8	43
84	Selective deposition of chemically-bonded gold electrodes onto PDMS microchannel side walls. Journal of Electroanalytical Chemistry, 2014, 727, 141-147.	3.8	11
85	Stability limitations for Pt/Sn–In2O3 and Pt/In–SnO2 in acidic electrochemical systems. Electrochimica Acta, 2014, 115, 116-125.	5.2	22
86	Investigation of metal oxide anode degradation in lithium-ion batteries via identical-location TEM. Journal of Materials Chemistry A, 2014, 2, 1627-1630.	10.3	40
87	Preparation of radiation-grafted powders for use as anion exchange ionomers in alkaline polymer electrolyte fuel cells. Journal of Materials Chemistry A, 2014, 2, 5124-5130.	10.3	103
88	Anion-exchange membranes in electrochemical energy systems. Energy and Environmental Science, 2014, 7, 3135-3191.	30.8	1,617
89	Flame-based processing as a practical approach for manufacturing hydrogen evolution electrodes. Journal of Power Sources, 2014, 271, 366-376.	7.8	22
90	Effect of surface chemistry on the double layer capacitance of polypyrrole-derived ordered mesoporous carbon. RSC Advances, 2014, 4, 47039-47046.	3.6	12

#	Article	IF	CITATIONS
91	Understanding the Growth of Pt Nanoparticles by Galvanic Displacement on ITO Nanocubes for ORR. ECS Transactions, 2014, 64, 191-198.	0.5	0
92	Platinum–copper nanotube electrocatalyst with enhanced activity and durability for oxygen reduction reactions. Journal of Materials Chemistry A, 2013, 1, 12293.	10.3	72
93	Effects of pore structure in nitrogen functionalized mesoporous carbon on oxygen reduction reaction activity of platinum nanoparticles. Carbon, 2013, 60, 28-40.	10.3	17
94	Temperature controlled surface chemistry of nitrogen-doped mesoporous carbon and its influence on Pt ORR activity. Applied Catalysis A: General, 2013, 464-465, 233-242.	4.3	28
95	Electrochemical Methane Activation and Conversion to Oxygenates at Room Temperature. Journal of the Electrochemical Society, 2013, 160, F1275-F1281.	2.9	54
96	High Stability, High Activity Pt/ITO Oxygen Reduction Electrocatalysts. Journal of the American Chemical Society, 2013, 135, 530-533.	13.7	163
97	Nanostructural effects on the cycle life and Li+ diffusion coefficient of nickel oxide anodes. Journal of Electroanalytical Chemistry, 2013, 711, 8-16.	3.8	39
98	Metal Carbides as Alternative Electrocatalyst Supports. ACS Catalysis, 2013, 3, 1184-1194.	11.2	358
99	Promises and Challenges of Unconventional Electrocatalyst Supports. Lecture Notes in Energy, 2013, , 689-728.	0.3	2
100	Pt/ITO Electrocatalysts with Excellent ORR Activity and Stability. ECS Transactions, 2013, 53, 1-6.	0.5	1
101	Influence of Pore Structure of N-Doped Mesoporous Carbon in PEM Fuel Cells. ECS Transactions, 2013, 50, 1287-1299.	0.5	2
102	Electrochemical Methane Activation and Conversion to Oxygenates at Room Temperature. ECS Transactions, 2013, 53, 1-20.	0.5	14
103	Evaluation of Tungsten Carbide and Tungsten Oxide as Pt Supports for Oxygen Reduction Reaction. ECS Meeting Abstracts, 2013, , .	0.0	0
104	Influence of Non-Conducting Zirconia on the Electrochemical Performance of Nickel Oxide in Alkaline Media at Room Temperature. Journal of the Electrochemical Society, 2012, 159, E187-E192.	2.9	10
105	Synthesis of Nanosize Tungsten Oxide and Its Evaluation as an Electrocatalyst Support for Oxygen Reduction in Acid Media. ACS Catalysis, 2012, 2, 456-463.	11.2	121
106	Recent progress in the electrochemical conversion and utilization of CO2. Catalysis Science and Technology, 2012, 2, 19-28.	4.1	264
107	Evaluation of tungsten carbide as the electrocatalyst support for platinum hydrogen evolution/oxidation catalysts. International Journal of Hydrogen Energy, 2012, 37, 8929-8938.	7.1	87
108	Structural and Electrochemical Studies of Pt Clusters Supported on High-Surface-Area Tungsten Carbide for Oxygen Reduction. ACS Catalysis, 2011, 1, 212-220.	11.2	116

#	Article	IF	CITATIONS
109	Effect of Nickel Oxide Synthesis Conditions on its Electrochemical Behavior in Alkaline Media. ECS Transactions, 2011, 35, 43-52.	0.5	0
110	Electrocatalytic Activity and Stability of Pt clusters on State-of-the-Art Supports: A Review. Catalysis Reviews - Science and Engineering, 2011, 53, 256-336.	12.9	118
111	Non-Carbon Supports for Energy Applications. ECS Meeting Abstracts, 2011, , .	0.0	0
112	Effect of nickel oxide synthesis conditions on its physical properties and electrocatalytic oxidation of methanol. Electrochimica Acta, 2011, 56, 5656-5666.	5.2	147
113	Carbonate Selective Ca2Ru2O7â^'yPyrochlore Enabling Room Temperature Carbonate Fuel Cells I. Synthesis and Physical Characterization. Journal of the Electrochemical Society, 2011, 159, B18-B23.	2.9	11
114	ORR and Fuel Cell Performance of Pt Supported on N-Functionalized Mesoporous Carbon. ECS Transactions, 2011, 41, 1183-1191.	0.5	7
115	New Cathode Catalysts for Room Temperature Carbonate Fuel Cells. ECS Transactions, 2011, 35, 193-199.	0.5	0
116	Hydrogen and Methanol Oxidation Reaction in Hydroxide and Carbonate Alkaline Media. Journal of the Electrochemical Society, 2011, 158, B349.	2.9	32
117	Carbonate Selective Ca2Ru2O7-yPyrochlore Enabling Room Temperature Carbonate Fuel Cells. Journal of the Electrochemical Society, 2011, 159, B12-B17.	2.9	8
118	Effect of hydroxide and carbonate alkaline media on anion exchange membranes. Journal of Power Sources, 2010, 195, 7176-7180.	7.8	100
119	Effect of CO2, HCO3â^' and CO3â^'2 on oxygen reduction in anion exchange membrane fuel cells. Electrochimica Acta, 2010, 55, 1638-1644.	5.2	57
120	Properties of Nitrogen-Functionalized Ordered Mesoporous Carbon Prepared Using Polypyrrole Precursor. Journal of the Electrochemical Society, 2010, 157, B1665.	2.9	116
121	Platinum Nanoparticles Supported on N-Functionalized Mesoporous Carbon. ECS Transactions, 2010, 33, 293-302.	0.5	2
122	Electroless Deposition and Characterization of PtxRu1â^'x Catalysts on Pt/C Nanoparticles for Methanol Oxidation. Journal of Fuel Cell Science and Technology, 2010, 7, .	0.8	11
123	Effect of Carbonate on Oxygen Reduction, Hydrogen Oxidation and Anion Exchange Membrane Chemical Stability. ECS Transactions, 2010, 33, 1735-1749.	0.5	12
124	Electrolytes for Long-Life, Ultra Low-Power Direct Methanol Fuel Cells. , 2009, , 1-50.		4
125	Performance of a Direct Borohydride Fuel Cell Stack. ECS Transactions, 2009, 25, 1951-1957.	0.5	6
126	Performance of Li-ion secondary batteries in low power, hybrid power supplies. Journal of Power Sources, 2009, 189, 1184-1189.	7.8	16

#	Article	IF	CITATIONS
127	Sol–gel based sulfonic acid-functionalized silica proton conductive membrane. Journal of Power Sources, 2009, 193, 562-569.	7.8	29
128	Phosphorus-doped glass proton exchange membranes for low temperature direct methanol fuel cells. Journal of Power Sources, 2008, 175, 91-97.	7.8	27
129	Carbon dioxide vent for direct methanol fuel cells. Journal of Power Sources, 2008, 185, 392-400.	7.8	11
130	Deposition of Pt _x Ru _{1â^'x} Catalysts for Methanol Oxidation in Micro Direct Methanol Fuel Cells. Israel Journal of Chemistry, 2008, 48, 251-257.	2.3	6
131	A Model for the Electroreduction of Molecular Oxygen. Journal of the Electrochemical Society, 2007, 154, A668.	2.9	17
132	Platinum–Glass Composite Electrode for Fuel Cell Applications. Electrochemical and Solid-State Letters, 2007, 10, B210.	2.2	9
133	Characterization of Thin-Film Electrodes on Proton-Conducting Glass Membranes for Micro DMFC Applications. ECS Transactions, 2007, 6, 361-369.	0.5	0
134	CoPdx oxygen reduction electrocatalysts for polymer electrolyte membrane and direct methanol fuel cells. Electrochimica Acta, 2007, 52, 2102-2108.	5.2	74
135	Kinetics and mechanism for the oxygen reduction reaction on polycrystalline cobalt–palladium electrocatalysts in acid media. Journal of Power Sources, 2007, 170, 28-37.	7.8	109
136	Investigations of carbon-supported CoPd3 catalysts as oxygen cathodes in PEM fuel cells. Electrochemistry Communications, 2006, 8, 406-410.	4.7	78