William E Mustain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1343245/publications.pdf

Version: 2024-02-01

136 papers 9,024 citations

50276 46 h-index 92 g-index

142 all docs

142 docs citations

times ranked

142

8148 citing authors

#	Article	IF	CITATIONS
1	Anion-exchange membranes in electrochemical energy systems. Energy and Environmental Science, 2014, 7, 3135-3191.	30.8	1,617
2	Durability challenges of anion exchange membrane fuel cells. Energy and Environmental Science, 2020, 13, 2805-2838.	30.8	393
3	Metal Carbides as Alternative Electrocatalyst Supports. ACS Catalysis, 2013, 3, 1184-1194.	11.2	358
4	Recent progress in the electrochemical conversion and utilization of CO2. Catalysis Science and Technology, 2012, 2, 19-28.	4.1	264
5	Poly(bis-arylimidazoliums) possessing high hydroxide ion exchange capacity and high alkaline stability. Nature Communications, 2019, 10, 2306.	12.8	239
6	High-performing commercial Fe–N–C cathode electrocatalyst for anion-exchange membrane fuel cells. Nature Energy, 2021, 6, 834-843.	39.5	238
7	Beyond catalysis and membranes: visualizing and solving the challenge of electrode water accumulation and flooding in AEMFCs. Energy and Environmental Science, 2018, 11, 551-558.	30.8	229
8	Radiation-grafted anion-exchange membranes: the switch from low- to high-density polyethylene leads to remarkably enhanced fuel cell performance. Energy and Environmental Science, 2019, 12, 1575-1579.	30.8	223
9	Catalytic Advantages, Challenges, and Priorities in Alkaline Membrane Fuel Cells. ACS Catalysis, 2020, 10, 225-234.	11.2	190
10	Achieving Highâ€Performance and 2000 h Stability in Anion Exchange Membrane Fuel Cells by Manipulating Ionomer Properties and Electrode Optimization. Advanced Energy Materials, 2020, 10, 2001986.	19.5	188
11	Composite Poly(norbornene) Anion Conducting Membranes for Achieving Durability, Water Management and High Power (3.4ÂW/cm ²) in Hydrogen/Oxygen Alkaline Fuel Cells. Journal of the Electrochemical Society, 2019, 166, F637-F644.	2.9	172
12	High Stability, High Activity Pt/ITO Oxygen Reduction Electrocatalysts. Journal of the American Chemical Society, 2013, 135, 530-533.	13.7	163
13	Effect of nickel oxide synthesis conditions on its physical properties and electrocatalytic oxidation of methanol. Electrochimica Acta, 2011, 56, 5656-5666.	5.2	147
14	An optimised synthesis of high performance radiation-grafted anion-exchange membranes. Green Chemistry, 2017, 19, 831-843.	9.0	141
15	The Effect of Ambient Carbon Dioxide on Anionâ€Exchange Membrane Fuel Cells. ChemSusChem, 2018, 11, 1136-1150.	6.8	137
16	Recent progress and perspectives of bifunctional oxygen reduction/evolution catalyst development for regenerative anion exchange membrane fuel cells. Nano Energy, 2018, 47, 172-198.	16.0	134
17	The Importance of Water Transport in High Conductivity and High-Power Alkaline Fuel Cells. Journal of the Electrochemical Society, 2020, 167, 054501.	2.9	132
18	High Performance Anion Exchange Membrane Fuel Cells Enabled by Fluoropoly(olefin) Membranes. Advanced Functional Materials, 2019, 29, 1902059.	14.9	128

#	Article	IF	Citations
19	Practical assessment of the performance of aluminium battery technologies. Nature Energy, 2021, 6, 21-29.	39.5	122
20	Synthesis of Nanosize Tungsten Oxide and Its Evaluation as an Electrocatalyst Support for Oxygen Reduction in Acid Media. ACS Catalysis, 2012, 2, 456-463.	11.2	121
21	Electrocatalytic Activity and Stability of Pt clusters on State-of-the-Art Supports: A Review. Catalysis Reviews - Science and Engineering, 2011, 53, 256-336.	12.9	118
22	Nitrogenâ€doped Carbon–CoO _{<i>x</i>} Nanohybrids: A Precious Metal Free Cathode that Exceeds 1.0â€W cm ^{â^'2} Peak Power and 100â€h Life in Anionâ€Exchange Membrane Fuel Cangewandte Chemie - International Edition, 2019, 58, 1046-1051.	e ils. 8	117
23	Properties of Nitrogen-Functionalized Ordered Mesoporous Carbon Prepared Using Polypyrrole Precursor. Journal of the Electrochemical Society, 2010, 157, B1665.	2.9	116
24	Structural and Electrochemical Studies of Pt Clusters Supported on High-Surface-Area Tungsten Carbide for Oxygen Reduction. ACS Catalysis, 2011, 1, 212-220.	11.2	116
25	Using operando techniques to understand and design high performance and stable alkaline membrane fuel cells. Nature Communications, 2020, 11, 3561.	12.8	113
26	Kinetics and mechanism for the oxygen reduction reaction on polycrystalline cobalt–palladium electrocatalysts in acid media. Journal of Power Sources, 2007, 170, 28-37.	7.8	109
27	Preferentially Oriented Ag Nanocrystals with Extremely High Activity and Faradaic Efficiency for CO ₂ Electrochemical Reduction to CO. ACS Applied Materials & Interfaces, 2018, 10, 1734-1742.	8.0	105
28	Poly(norbornene) anion conductive membranes: homopolymer, block copolymer and random copolymer properties and performance. Journal of Materials Chemistry A, 2020, 8, 17568-17578.	10.3	105
29	Preparation of radiation-grafted powders for use as anion exchange ionomers in alkaline polymer electrolyte fuel cells. Journal of Materials Chemistry A, 2014, 2, 5124-5130.	10.3	103
30	Effect of hydroxide and carbonate alkaline media on anion exchange membranes. Journal of Power Sources, 2010, 195, 7176-7180.	7.8	100
31	Poly(olefin)-Based Anion Exchange Membranes Prepared Using Ziegler–Natta Polymerization. Macromolecules, 2019, 52, 4030-4041.	4.8	92
32	Understanding how high-performance anion exchange membrane fuel cells were achieved: Component, interfacial, and cell-level factors. Current Opinion in Electrochemistry, 2018, 12, 233-239.	4.8	91
33	Beyond 1.0ÂW cm ^{â^'2} Performance without Platinum: The Beginning of a New Era in Anion Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 2018, 165, J3039-J3044.	2.9	91
34	Rational Synthesis of Metallo-Cations Toward Redox- and Alkaline-Stable Metallo-Polyelectrolytes. Journal of the American Chemical Society, 2020, 142, 1083-1089.	13.7	91
35	Activity and durability of Pt-Ni nanocage electocatalysts in proton exchange membrane fuel cells. Applied Catalysis B: Environmental, 2017, 203, 927-935.	20.2	90
36	Evaluation of tungsten carbide as the electrocatalyst support for platinum hydrogen evolution/oxidation catalysts. International Journal of Hydrogen Energy, 2012, 37, 8929-8938.	7.1	87

#	Article	IF	Citations
37	Investigations of carbon-supported CoPd3 catalysts as oxygen cathodes in PEM fuel cells. Electrochemistry Communications, 2006, 8, 406-410.	4.7	78
38	Influence of the ionomer/carbon ratio for low-Pt loading catalyst layer prepared by reactive spray deposition technology. Journal of Power Sources, 2015, 283, 84-94.	7.8	78
39	Highly durable and active Co3O4 nanocrystals supported on carbon nanotubes as bifunctional electrocatalysts in alkaline media. Applied Catalysis B: Environmental, 2017, 203, 138-145.	20.2	7 5
40	CoPdx oxygen reduction electrocatalysts for polymer electrolyte membrane and direct methanol fuel cells. Electrochimica Acta, 2007, 52, 2102-2108.	5.2	74
41	Quantifying and elucidating the effect of CO ₂ on the thermodynamics, kinetics and charge transport of AEMFCs. Energy and Environmental Science, 2019, 12, 2806-2819.	30.8	74
42	Platinumâ€"copper nanotube electrocatalyst with enhanced activity and durability for oxygen reduction reactions. Journal of Materials Chemistry A, 2013, 1, 12293.	10.3	72
43	Effect of CO2, HCO3â^' and CO3â^'2 on oxygen reduction in anion exchange membrane fuel cells. Electrochimica Acta, 2010, 55, 1638-1644.	5.2	57
44	Electrochemical Methane Activation and Conversion to Oxygenates at Room Temperature. Journal of the Electrochemical Society, 2013, 160, F1275-F1281.	2.9	54
45	High-Performing PGM-Free AEMFC Cathodes from Carbon-Supported Cobalt Ferrite Nanoparticles. Catalysts, 2019, 9, 264.	3. 5	53
46	High Performance FeNC and Mn-oxide/FeNC Layers for AEMFC Cathodes. Journal of the Electrochemical Society, 2020, 167, 134505.	2.9	49
47	Strategies for Reducing the PGM Loading in High Power AEMFC Anodes. Journal of the Electrochemical Society, 2018, 165, F710-F717.	2.9	48
48	Influence of conductivity on the capacity retention of NiO anodes in Li-ion batteries. Journal of Power Sources, 2015, 276, 46-53.	7.8	43
49	Investigation of metal oxide anode degradation in lithium-ion batteries via identical-location TEM. Journal of Materials Chemistry A, 2014, 2, 1627-1630.	10.3	40
50	Ionomer Optimization for Water Uptake and Swelling in Anion Exchange Membrane Electrolyzer: Oxygen Evolution Electrode. Journal of the Electrochemical Society, 2020, 167, 164514.	2.9	40
51	Nanostructural effects on the cycle life and Li+ diffusion coefficient of nickel oxide anodes. Journal of Electroanalytical Chemistry, 2013, 711, 8-16.	3.8	39
52	Stability and Activity of Pt/ITO Electrocatalyst for Oxygen Reduction Reaction in Alkaline Media. Electrochimica Acta, 2015, 157, 175-182.	5.2	38
53	Highly active and durable Pd-Cu catalysts for oxygen reduction in alkaline exchange membrane fuel cells. Frontiers in Energy, 2017, 11, 299-309.	2.3	37
54	Low-Temperature Lithium Plating/Corrosion Hazard in Lithium-Ion Batteries: Electrode Rippling, Variable States of Charge, and Thermal and Nonthermal Runaway. ACS Applied Energy Materials, 2020, 3, 3653-3664.	5.1	37

#	Article	IF	CITATIONS
55	Highly Conductive In-SnO2/RGO Nano-Heterostructures with Improved Lithium-Ion Battery Performance. Scientific Reports, 2016, 6, 25860.	3.3	34
56	Understanding the Dynamics of Primary Zn-MnO ₂ Alkaline Battery Gassing with Operando Visualization and Pressure Cells. Journal of the Electrochemical Society, 2018, 165, A2528-A2535.	2.9	34
57	Hydrogen and Methanol Oxidation Reaction in Hydroxide and Carbonate Alkaline Media. Journal of the Electrochemical Society, 2011, 158, B349.	2.9	32
58	Composite Materials with Combined Electronic and Ionic Properties. Matter, 2019, 1, 959-975.	10.0	32
59	Nitrogenâ€doped Carbon–CoO _{<i>x</i>} Nanohybrids: A Precious Metal Free Cathode that Exceeds 1.0â€W cm ^{â^'2} Peak Power and 100â€h Life in Anionâ€Exchange Membrane Fuel CAngewandte Chemie, 2019, 131, 1058-1063.	Ceppe	32
60	Using nanoconfinement to inhibit the degradation pathways of conversion-metal oxide anodes for highly stable fast-charging Li-ion batteries. Journal of Materials Chemistry A, 2020, 8, 2712-2727.	10.3	32
61	Ionomer Optimization for Water Uptake and Swelling in Anion Exchange Membrane Electrolyzer: Hydrogen Evolution Electrode. Journal of the Electrochemical Society, 2021, 168, 024503.	2.9	31
62	Importance of Particle Size and Distribution in Achieving High-Activity, High-Stability Oxygen Reduction Catalysts. ACS Catalysis, 2015, 5, 1560-1567.	11.2	30
63	Sol–gel based sulfonic acid-functionalized silica proton conductive membrane. Journal of Power Sources, 2009, 193, 562-569.	7.8	29
64	Temperature controlled surface chemistry of nitrogen-doped mesoporous carbon and its influence on Pt ORR activity. Applied Catalysis A: General, 2013, 464-465, 233-242.	4.3	28
65	Phosphorus-doped glass proton exchange membranes for low temperature direct methanol fuel cells. Journal of Power Sources, 2008, 175, 91-97.	7.8	27
66	High-rate and long-life of Li-ion batteries using reduced graphene oxide/Co ₃ O ₄ as anode materials. RSC Advances, 2016, 6, 24320-24330.	3.6	25
67	Carbonate Dynamics and Opportunities With Low Temperature, Anion Exchange Membrane-Based Electrochemical Carbon Dioxide Separators. Journal of Electrochemical Energy Conversion and Storage, 2017, 14, .	2.1	25
68	Non-destructive parameter extraction for a reduced order lumped electrochemical-thermal model for simulating Li-ion full-cells. Journal of Power Sources, 2020, 445, 227296.	7.8	25
69	Improving alkaline ionomers. Nature Energy, 2020, 5, 359-360.	39.5	25
70	KOH vs Deionized Water Operation in Anion Exchange Membrane Electrolyzers. Journal of the Electrochemical Society, 2022, 169, 044526.	2.9	24
71	Stability limitations for Pt/Sn–In2O3 and Pt/In–SnO2 in acidic electrochemical systems. Electrochimica Acta, 2014, 115, 116-125.	5.2	22
72	Flame-based processing as a practical approach for manufacturing hydrogen evolution electrodes. Journal of Power Sources, 2014, 271, 366-376.	7.8	22

#	Article	IF	CITATIONS
73	Fabrication of High Performing PEMFC Catalyst-Coated Membranes with a Low Cost Air-Assisted Cylindrical Liquid Jets Spraying System. Journal of the Electrochemical Society, 2016, 163, E407-E413.	2.9	22
74	Understanding and improving anode performance in an alkaline membrane electrolyzer using statistical design of experiments. Electrochimica Acta, 2022, 409, 140001.	5.2	22
75	Explaining the role and mechanism of carbon matrices in enhancing reaction reversibility of metal oxide anodes for high performance Li ion batteries. Carbon, 2018, 130, 515-524.	10.3	21
76	Two Pathways for Near Room Temperature Electrochemical Conversion of Methane to Methanol. ECS Transactions, 2015, 66, 129-136.	0.5	20
77	Understanding how single-atom site density drives the performance and durability of PGM-free Fe–N–C cathodes in anion exchange membrane fuel cells. Materials Today Advances, 2021, 12, 100179.	5.2	18
78	A Model for the Electroreduction of Molecular Oxygen. Journal of the Electrochemical Society, 2007, 154, A668.	2.9	17
79	Effects of pore structure in nitrogen functionalized mesoporous carbon on oxygen reduction reaction activity of platinum nanoparticles. Carbon, 2013, 60, 28-40.	10.3	17
80	Performance of Li-ion secondary batteries in low power, hybrid power supplies. Journal of Power Sources, 2009, 189, 1184-1189.	7.8	16
81	Large Scale Synthesis of Manganese Oxide/Reduced Graphene Oxide Composites as Anode Materials for Long Cycle Lithium Ion Batteries. ACS Applied Energy Materials, 2021, 4, 5424-5433.	5.1	16
82	Structure and chemistry of the solid electrolyte interphase (SEI) on a high capacity conversion-based anode: NiO. Journal of Materials Chemistry A, 2021, 9, 523-537.	10.3	15
83	Electrochemical Methane Activation and Conversion to Oxygenates at Room Temperature. ECS Transactions, 2013, 53, 1-20.	0.5	14
84	Editors' Choiceâ€"Examining Performance and Durability of Anion Exchange Membrane Fuel Cells with Novel Spirocyclic Anion Exchange Membranes. Journal of the Electrochemical Society, 2021, 168, 044525.	2.9	14
85	High Performance Bi-Metallic Manganese Cobalt Oxide/Carbon Nanotube Li-ion Battery Anodes. Electrochimica Acta, 2016, 213, 620-625.	5. 2	13
86	In-depth structural understanding of zinc oxide addition to alkaline electrolytes to protect aluminum against corrosion and gassing. Journal of Applied Electrochemistry, 2019, 49, 895-907.	2.9	13
87	Effect of Membrane Properties on the Carbonation of Anion Exchange Membrane Fuel Cells. Membranes, 2021, 11, 102.	3.0	13
88	Effect of Carbonate on Oxygen Reduction, Hydrogen Oxidation and Anion Exchange Membrane Chemical Stability. ECS Transactions, 2010, 33, 1735-1749.	0.5	12
89	Effect of surface chemistry on the double layer capacitance of polypyrrole-derived ordered mesoporous carbon. RSC Advances, 2014, 4, 47039-47046.	3.6	12
90	Application of a Coated Film Catalyst Layer Model to a High Temperature Polymer Electrolyte Membrane Fuel Cell with Low Catalyst Loading Produced by Reactive Spray Deposition Technology. Catalysts, 2015, 5, 1673-1691.	3.5	12

#	Article	IF	Citations
91	Investigation of Transport and Kinetic Nonideality in Solid Li-Ion Electrodes through Deconvolution of Electrochemical Impedance Spectra. Journal of the Electrochemical Society, 2020, 167, 020523.	2.9	12
92	Carbon dioxide vent for direct methanol fuel cells. Journal of Power Sources, 2008, 185, 392-400.	7.8	11
93	Electroless Deposition and Characterization of PtxRu1â^'x Catalysts on Pt/C Nanoparticles for Methanol Oxidation. Journal of Fuel Cell Science and Technology, 2010, 7, .	0.8	11
94	Carbonate Selective Ca2Ru2O7â^'yPyrochlore Enabling Room Temperature Carbonate Fuel Cells I. Synthesis and Physical Characterization. Journal of the Electrochemical Society, 2011, 159, B18-B23.	2.9	11
95	Selective deposition of chemically-bonded gold electrodes onto PDMS microchannel side walls. Journal of Electroanalytical Chemistry, 2014, 727, 141-147.	3.8	11
96	Ultra-Low Pt Loading Catalyst Layers for PEMFC Using Reactive Spray Deposition Technology. ECS Transactions, 2015, 69, 487-496.	0.5	11
97	Improving Performance in Alkaline Membrane Fuel Cells through Enhanced Water Management. ECS Transactions, 2016, 75, 949-954.	0.5	11
98	Influence of Non-Conducting Zirconia on the Electrochemical Performance of Nickel Oxide in Alkaline Media at Room Temperature. Journal of the Electrochemical Society, 2012, 159, E187-E192.	2.9	10
99	Effect of cobalt alloying on the electrochemical performance of manganese oxide nanoparticles nucleated on multiwalled carbon nanotubes. Nanotechnology, 2017, 28, 155403.	2.6	10
100	Cobalt Doping as a Pathway To Stabilize the Solid-State Conversion Chemistry of Manganese Oxide Anodes in Li-lon Batteries. Journal of Physical Chemistry C, 2018, 122, 7120-7127.	3.1	10
101	Understanding Recoverable vs Unrecoverable Voltage Losses and Long-Term Degradation Mechanisms in Anion Exchange Membrane Fuel Cells. ACS Catalysis, 2022, 12, 8116-8126.	11.2	10
102	Platinum–Glass Composite Electrode for Fuel Cell Applications. Electrochemical and Solid-State Letters, 2007, 10, B210.	2.2	9
103	Editors' Choiceâ€"Power-Generating Electrochemical CO ₂ Scrubbing from Air Enabling Practical AEMFC Application. Journal of the Electrochemical Society, 2021, 168, 024504.	2.9	9
104	Carbonate Selective Ca2Ru2O7-yPyrochlore Enabling Room Temperature Carbonate Fuel Cells. Journal of the Electrochemical Society, 2011, 159, B12-B17.	2.9	8
105	Improved Capacity Retention of Metal Oxide Anodes in Liâ€lon Batteries: Increasing Intraparticle Electronic Conductivity through Na Inclusion in Mn 3 O 4. ChemElectroChem, 2018, 5, 2059-2063.	3.4	8
106	ORR and Fuel Cell Performance of Pt Supported on N-Functionalized Mesoporous Carbon. ECS Transactions, 2011, 41, 1183-1191.	0.5	7
107	Design of Highly Reversible Zinc Anodes for Aqueous Batteries Using Preferentially Oriented Electrolytic Zinc. Batteries and Supercaps, 2020, 3, 1220-1232.	4.7	7
108	Catalysts for Polymer Membrane Fuel Cells. Catalysts, 2020, 10, 86.	3.5	7

#	Article	IF	CITATIONS
109	Deposition of Pt _x Ru _{1â^'x} Catalysts for Methanol Oxidation in Micro Direct Methanol Fuel Cells. Israel Journal of Chemistry, 2008, 48, 251-257.	2.3	6
110	Performance of a Direct Borohydride Fuel Cell Stack. ECS Transactions, 2009, 25, 1951-1957.	0.5	6
111	Determining the Electrochemically Active Area of IrO _x Powder Catalysts in an Operating Proton Exchange Membrane Electrolyzer. ECS Transactions, 2015, 69, 877-881.	0.5	6
112	Electrospun nanofibers with surface oriented lamellar patterns and their potential applications. Nanoscale, 2020, 12, 12993-13000.	5.6	6
113	Metal Oxide/Reduced Graphene Oxide Anodes for Lithium-Ion Batteries. ECS Transactions, 2015, 66, 47-55.	0.5	5
114	Stable, high-performing bifunctional electrodes for anion exchange membrane-based unitized regenerative fuel cells. Journal of Power Sources, 2022, 541, 231599.	7.8	5
115	Electrolytes for Long-Life, Ultra Low-Power Direct Methanol Fuel Cells. , 2009, , 1-50.		4
116	Reaction Dependent Transport of Carbonate and Bicarbonate through Anion Exchange Membranes in Electrolysis and Fuel Cell Operations. ECS Transactions, 2015, 69, 1-9.	0.5	4
117	Water and Ion Transport in Anion Exchange Membrane Fuel Cells. Lecture Notes in Energy, 2018, , 1-31.	0.3	4
118	Predicting the Effects of Carbon Dioxide on the Conductivity of Electrospun Anion Exchange Membranes. Journal of the Electrochemical Society, 2019, 166, F1047-F1054.	2.9	4
119	Partial deployment of Al in Zn–MnO2 alkaline battery anodes to improve the capacity and reversibility. Journal of Power Sources, 2021, 506, 230167.	7.8	4
120	Platinum Nanoparticles Supported on N-Functionalized Mesoporous Carbon. ECS Transactions, 2010, 33, 293-302.	0.5	2
121	Promises and Challenges of Unconventional Electrocatalyst Supports. Lecture Notes in Energy, 2013, , 689-728.	0.3	2
122	Influence of Pore Structure of N-Doped Mesoporous Carbon in PEM Fuel Cells. ECS Transactions, 2013, 50, 1287-1299.	0.5	2
123	Strategies for Reducing the PGM Loading in High Power AEMFC Anodes. ECS Transactions, 2018, 85, 873-887.	0.5	2
124	(Invited) Electrochemical Pathways for Electrochemical Oxidation of Acetic Acid. ECS Transactions, 2018, 85, 29-34.	0.5	2
125	Influence of Preparation Conditions on Platinum and Palladium Catalysts Supported on Anodically Oxidized Stainless Steel Wire Meshes for CO Oxidation. Emission Control Science and Technology, 2021, 7, 210-221.	1.5	2
126	(Invited) Reaching New Heights in Anion Exchange Membrane Fuel Cell Performance and Stability: Catalysts, Membranes, Water, and Beyond. ECS Meeting Abstracts, 2018, , .	0.0	2

#	Article	IF	CITATIONS
127	Pt/ITO Electrocatalysts with Excellent ORR Activity and Stability. ECS Transactions, 2013, 53, 1-6.	0.5	1
128	Modeling Nickel Oxide Particle Stress Behavior Induced by Lithiation Using a FEM Linear Elastic Approach. Journal of the Electrochemical Society, 2017, 164, A867-A873.	2.9	1
129	Approaching 2 Wâ^™cm-2 AEMFCs through Electrode Engineering and Controlling the Cell Water Content and Balance. ECS Meeting Abstracts, 2017, , .	0.0	1
130	Characterization of Thin-Film Electrodes on Proton-Conducting Glass Membranes for Micro DMFC Applications. ECS Transactions, 2007, 6, 361-369.	0.5	0
131	Effect of Nickel Oxide Synthesis Conditions on its Electrochemical Behavior in Alkaline Media. ECS Transactions, 2011, 35, 43-52.	0.5	0
132	Non-Carbon Supports for Energy Applications. ECS Meeting Abstracts, 2011, , .	0.0	0
133	New Cathode Catalysts for Room Temperature Carbonate Fuel Cells. ECS Transactions, 2011, 35, 193-199.	0.5	0
134	Evaluation of Tungsten Carbide and Tungsten Oxide as Pt Supports for Oxygen Reduction Reaction. ECS Meeting Abstracts, 2013, , .	0.0	0
135	Understanding the Growth of Pt Nanoparticles by Galvanic Displacement on ITO Nanocubes for ORR. ECS Transactions, 2014, 64, 191-198.	0.5	0
136	In Situ Oxygen Gradient Generation Inside a Termite-Inspired Microfluidic Habitat. ECS Transactions, 2015, 66, 1-5.	0.5	0