Marek Pruski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1341301/publications.pdf

Version: 2024-02-01

145	7,352	44	80
papers	citations	h-index	g-index
148	148	148	7161 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Organic Functionalization and Morphology Control of Mesoporous Silicas via a Co-Condensation Synthesis Method. Chemistry of Materials, 2003, 15, 4247-4256.	6.7	734
2	Cooperative Catalysis by General Acid and Base Bifunctionalized Mesoporous Silica Nanospheres. Angewandte Chemie - International Edition, 2005, 44, 1826-1830.	13.8	335
3	Upcycling Single-Use Polyethylene into High-Quality Liquid Products. ACS Central Science, 2019, 5, 1795-1803.	11.3	283
4	Solid-State NMR Study of MCM-41-type Mesoporous Silica Nanoparticles. Journal of the American Chemical Society, 2005, 127, 3057-3068.	13.7	235
5	Gatekeeping Layer Effect:Â A Poly(lactic acid)-coated Mesoporous Silica Nanosphere-Based Fluorescence Probe for Detection of Amino-Containing Neurotransmitters. Journal of the American Chemical Society, 2004, 126, 1640-1641.	13.7	230
6	Mechanically Induced Solid-State Generation of Phosphorus Ylides and the Solvent-Free Wittig Reaction. Journal of the American Chemical Society, 2002, 124, 6244-6245.	13.7	207
7	Controlling the Selectivity of Competitive Nitroaldol Condensation by Using a Bifunctionalized Mesoporous Silica Nanosphere-Based Catalytic System. Journal of the American Chemical Society, 2004, 126, 1010-1011.	13.7	188
8	Dialkylaminopyridine-Functionalized Mesoporous Silica Nanosphere as an Efficient and Highly Stable Heterogeneous Nucleophilic Catalyst. Journal of the American Chemical Society, 2005, 127, 13305-13311.	13.7	171
9	Dynamic Nuclear Polarization Solid-State NMR in Heterogeneous Catalysis Research. ACS Catalysis, 2015, 5, 7055-7062.	11.2	160
10	Tuning of particle morphology and pore properties in mesoporous silicas with multiple organic functional groupsElectronic supplementary information (ESI) available: experimental details, SEM images, N2 adsorption isotherms, pore size distributions, TEM images, and details of solid state 13C and 29Si NMR experiments. See http://www.rsc.org/suppdata/cc/b3/b306255d/. Chemical Communications,	4.1	142
11	2003, , 2364. Temperature Responsive Solution Partition of Organic–Inorganic Hybrid Poly(<i>N</i> â€isopropylacrylamide)â€Coated Mesoporous Silica Nanospheres. Advanced Functional Materials, 2008, 18, 1390-1398.	14.9	129
	Oxidative Polymerization of 1,4-Diethynylbenzene into Highly Conjugated Poly(phenylene) Tj ETQq0 0 0 rgBT /O		
12	Materials. Journal of the American Chemical Society, 2002, 124, 9040-9041.	13.7	128
13	Mesoporous Silica Nanoparticles Loaded with Surfactant: Low Temperature Magic Angle Spinning ¹³ C and ²⁹ Si NMR Enhanced by Dynamic Nuclear Polarization. Journal of Physical Chemistry C, 2013, 117, 1375-1382.	3.1	128
14	Natural Abundance ¹⁷ 0 DNP Two-Dimensional and Surface-Enhanced NMR Spectroscopy. Journal of the American Chemical Society, 2015, 137, 8336-8339.	13.7	126
15	Chemical Shift Correlation NMR Spectroscopy with Indirect Detection in Fast Rotating Solids:  Studies of Organically Functionalized Mesoporous Silicas. Journal of the American Chemical Society, 2007, 129, 12076-12077.	13.7	118
16	Studies of Organically Functionalized Mesoporous Silicas Using Heteronuclear Solid-State Correlation NMR Spectroscopy under Fast Magic Angle Spinning. Journal of the American Chemical Society, 2005, 127, 7587-7593.	13.7	113
17	Isomerization of the Prenucleation Building Unit during Crystallization of AlPO4-CJ2:Â An MQMAS, CP-MQMAS, and HETCOR NMR Study. Journal of the American Chemical Society, 1999, 121, 12148-12153.	13.7	102
18	Modification of H-ZSM-5 zeolites with phosphorus. 1. Identification of aluminum species by 27Al solid-state NMR and characterization of their catalytic properties. Microporous and Mesoporous Materials, 2006, 95, 286-295.	4.4	90

#	Article	lF	Citations
19	Mesoporous Silica-Supported Amidozirconium-Catalyzed Carbonyl Hydroboration. ACS Catalysis, 2015, 5, 7399-7414.	11.2	87
20	Study of Intermolecular Interactions in the Corrole Matrix by Solidâ€State NMR under 100â€kHz MAS and Theoretical Calculations. Angewandte Chemie - International Edition, 2013, 52, 14108-14111.	13.8	86
21	Indirectly detected through-bond chemical shift correlation NMR spectroscopy in solids under fast MAS: Studies of organic–inorganic hybrid materials. Journal of Magnetic Resonance, 2009, 196, 92-95.	2.1	85
22	DNP-Enhanced Ultrawideline Solid-State NMR Spectroscopy: Studies of Platinum in Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2016, 7, 2322-2327.	4.6	77
23	Substrate inhibition in the heterogeneous catalyzed aldol condensation: A mechanistic study of supported organocatalysts. Journal of Catalysis, 2012, 291, 63-68.	6.2	76
24	Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials. Physical Chemistry Chemical Physics, 2013, 15, 5553.	2.8	76
25	Benzene Selectivity in Competitive Arene Hydrogenation: Effects of Single-Site Catalyst···Acidic Oxide Surface Binding Geometry. Journal of the American Chemical Society, 2015, 137, 6770-6780.	13.7	76
26	Directly and indirectly detected through-bond heteronuclear correlation solid-state NMR spectroscopy under fast MAS. Journal of Magnetic Resonance, 2009, 201, 165-174.	2.1	71
27	Template Removal and Thermal Stability of Organically Functionalized Mesoporous Silica Nanoparticles. Chemistry of Materials, 2006, 18, 4319-4327.	6.7	70
28	Highly Dispersed SiO _{<i>x</i>} /Al ₂ O ₃ Catalysts Illuminate the Reactivity of Isolated Silanol Sites. Angewandte Chemie - International Edition, 2015, 54, 13346-13351.	13.8	66
29	Probing Surface Hydrogen Bonding and Dynamics by Natural Abundance, Multidimensional, ¹⁷ O DNP-NMR Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 11535-11544.	3.1	65
30	Solid-state 27Al NMR investigation of thermal decomposition of LiAlH4. Journal of Solid State Chemistry, 2004, 177, 648-653.	2.9	63
31	Natural Abundance ¹⁷ O DNPâ€NMR Provides Precise Oâ^'H Distances and Insights into the BrĂnsted Acidity of Heterogeneous Catalysts. Angewandte Chemie - International Edition, 2017, 56, 9165-9169.	13.8	63
32	Characterizing Substrate–Surface Interactions on Alumina-Supported Metal Catalysts by Dynamic Nuclear Polarization-Enhanced Double-Resonance NMR Spectroscopy. Journal of the American Chemical Society, 2017, 139, 2702-2709.	13.7	59
33	Atomic-Level Structure Characterization of Biomass Pre- and Post-Lignin Treatment by Dynamic Nuclear Polarization-Enhanced Solid-State NMR. Journal of Physical Chemistry A, 2017, 121, 623-630.	2.5	57
34	Probing Quadrupolar Nuclei by Solid-State NMR Spectroscopy: Recent Advances. Topics in Current Chemistry, 2011, 306, 119-188.	4.0	56
35	Mechanism of Solid-State Thermolysis of Ammonia Borane: A ¹⁵ N NMR Study Using Fast Magic-Angle Spinning and Dynamic Nuclear Polarization. Journal of Physical Chemistry C, 2014, 118, 19548-19555.	3.1	56
36	Chemoselective Hydrogenation with Supported Organoplatinum(IV) Catalyst on Zn(II)-Modified Silica. Journal of the American Chemical Society, 2018, 140, 3940-3951.	13.7	56

#	Article	IF	Citations
37	Probing through bond connectivities with MQMAS NMR. Solid State Nuclear Magnetic Resonance, 2004, 26, 51-55.	2.3	55
38	Natural abundance ¹⁴ N and ¹⁵ N solid-state NMR of pharmaceuticals and their polymorphs. Physical Chemistry Chemical Physics, 2016, 18, 17713-17730.	2.8	55
39	Solvent-Induced Reversal of Activities between Two Closely Related Heterogeneous Catalysts in the Aldol Reaction. ACS Catalysis, 2013, 3, 265-271.	11.2	54
40	Indirectly detected heteronuclear correlation solid-state NMR spectroscopy of naturally abundant 15N nuclei. Solid State Nuclear Magnetic Resonance, 2014, 57-58, 17-21.	2.3	54
41	Stabilizing unstable species through single-site isolation: a catalytically active TaV trialkyl in a porous organic polymer. Chemical Science, 2013, 4, 2483.	7.4	51
42	Conformations of Silica-Bound (Pentafluorophenyl)propyl Groups Determined by Solid-State NMR Spectroscopy and Theoretical Calculations. Journal of the American Chemical Society, 2010, 132, 12452-12457.	13.7	49
43	Spatial distribution of organic functional groups supported on mesoporous silica nanoparticles: a study by conventional and DNP-enhanced ²⁹ Si solid-state NMR. Physical Chemistry Chemical Physics, 2017, 19, 1781-1789.	2.8	49
44	Characterization of Covalent Linkages in Organically Functionalized MCM-41 Mesoporous Materials by Solid-State NMR and Theoretical Calculations. Journal of Physical Chemistry B, 2007, 111, 3877-3885.	2.6	48
45	Urea and Thiourea-Functionalized Mesoporous Silica Nanoparticle Catalysts with Enhanced Catalytic Activity for Diels–Alder Reaction. Topics in Catalysis, 2010, 53, 187-191.	2.8	47
46	A Kinetic Study on the Adsorption and Reaction of Hydrogen over Silica-Supported Ruthenium and Silver–Ruthenium Catalysts during the Hydrogenation of Carbon Monoxide. Journal of Catalysis, 1999, 188, 186-202.	6.2	44
47	170 MAS and 3QMAS NMR Investigation of Crystalline V2O5and Layered V2O5·nH2O Gels. Journal of the American Chemical Society, 2002, 124, 8435-8444.	13.7	43
48	Rational Catalyst Design: A Multifunctional Mesoporous Silica Catalyst for Shifting the Reaction Equilibrium by Removal of Byproduct. ACS Catalysis, 2011, 1, 729-732.	11.2	42
49	Optimal sample formulations for DNP SENS: The importance of radical-surface interactions. Current Opinion in Colloid and Interface Science, 2018, 33, 9-18.	7.4	42
50	SPAM-MQ-HETCOR: an improved method for heteronuclear correlation spectroscopy between quadrupolar and spin-1/2 nuclei in solid-state NMR. Physical Chemistry Chemical Physics, 2006, 8, 144-150.	2.8	41
51	Selective and Efficient Silylation of Mesoporous Silica: A Quantitative Assessment of Synthetic Strategies by Solid-State NMR. Journal of Physical Chemistry C, 2012, 116, 7083-7090.	3.1	41
52	Characterization of the Argonne premium coals by using hydrogen-1 and carbon-13 NMR and FT-IR spectroscopies. Energy & E	5.1	40
53	Mechanochemical transformations in Li(Na)AlH4–Li(Na)NH2 systems. Acta Materialia, 2007, 55, 3121-3130.	7.9	39
54	Phosphate modified ceria as a Brønsted acidic/redox multifunctional catalyst. Journal of Materials Chemistry A, 2017, 5, 4455-4466.	10.3	39

#	Article	IF	CITATIONS
55	Electrophilic Organoiridium(III) Pincer Complexes on Sulfated Zirconia for Hydrocarbon Activation and Functionalization. Journal of the American Chemical Society, 2019, 141, 6325-6337.	13.7	38
56	Identifying low-coverage surface species on supported noble metal nanoparticle catalysts by DNP-NMR. Chemical Communications, 2016, 52, 1859-1862.	4.1	36
57	Indirect detection of infinite-speed MAS solid-state NMR spectra. Journal of Magnetic Resonance, 2017, 276, 95-102.	2.1	36
58	Selective Host–Guest Interaction between Metal Ions and Metal–Organic Frameworks Using Dynamic Nuclear Polarization Enhanced Solid‧tate NMR Spectroscopy. Chemistry - A European Journal, 2014, 20, 16308-16313.	3.3	35
59	Nature of Terminating Hydroxyl Groups and Intercalating Water in Ti ₃ C ₂ T _{<i>x</i>} MXenes: A Study by ¹ H Solid-State NMR and DFT Calculations. Journal of Physical Chemistry C, 2020, 124, 13649-13655.	3.1	35
60	Solid-State NMR Investigations of the Immobilization of a BF ₄ ^{â^'} Salt of a Palladium(II) Complex on Silica. Journal of the American Chemical Society, 2009, 131, 11801-11810.	13.7	34
61	Effects of biradical deuteration on the performance of DNP: towards better performing polarizing agents. Physical Chemistry Chemical Physics, 2016, 18, 65-69.	2.8	34
62	Evidence for Redox Mechanisms in Organometallic Chemisorption and Reactivity on Sulfated Metal Oxides. Journal of the American Chemical Society, 2018, 140, 6308-6316.	13.7	34
63	PRESTO polarization transfer to quadrupolar nuclei: implications for dynamic nuclear polarization. Physical Chemistry Chemical Physics, 2015, 17, 22616-22622.	2.8	33
64	Selective functionalization of the mesopores of SBA-15. Microporous and Mesoporous Materials, 2015, 203, 123-131.	4.4	33
65	In Silico Design of DNP Polarizing Agents: Can Current Dinitroxides Be Improved?. ChemPhysChem, 2017, 18, 2279-2287.	2.1	32
66	Shedding light on the atomic-scale structure of amorphous silica–alumina and its Brønsted acid sites. Physical Chemistry Chemical Physics, 2019, 21, 19529-19537.	2.8	32
67	Critical Role of Anion–Solvent Interactions for Dynamics of Solvent-in-Salt Solutions. Journal of Physical Chemistry C, 2020, 124, 8457-8466.	3.1	32
68	Single Molecule Investigation of Nanoconfinement Hydrophobicity in Heterogeneous Catalysis. Journal of the American Chemical Society, 2020, 142, 13305-13309.	13.7	31
69	Site-Specific Sodiation Mechanisms of Selenium in Microporous Carbon Host. Nano Letters, 2020, 20, 918-928.	9.1	30
70	Homonuclear dipolar decoupling under fast MAS: Resolution patterns and simple optimization strategy. Journal of Magnetic Resonance, 2010, 203, 144-149.	2.1	29
71	Surface Organometallic Chemistry of Supported Iridium(III) as a Probe for Organotransition Metalâ \in Support Interactions in Câ \in H Activation. ACS Catalysis, 2018, 8, 5363-5373.	11,2	29
72	Mobilities of hydrogen in solvent-swollen coals. A study by pulsed NMR. Energy & Samp; Fuels, 1987, 1, 45-50.	5.1	27

#	Article	IF	Citations
73	A solid-state NMR investigation of the structure of mesoporous silica nanoparticle supported rhodium catalysts. Solid State Nuclear Magnetic Resonance, 2009, 35, 82-86.	2.3	27
74	Calcium Containing Silicate Mixed Oxide-Based Heterogeneous Catalysts for Biodiesel Production. Topics in Catalysis, 2010, 53, 746-754.	2.8	27
75	Improved strategies for DNP-enhanced 2D 1H-X heteronuclear correlation spectroscopy of surfaces. Solid State Nuclear Magnetic Resonance, 2017, 87, 38-44.	2.3	27
76	Spatial Distribution of Silica-Bound Catalytic Organic Functional Groups Can Now Be Revealed by Conventional and DNP-Enhanced Solid-State NMR Methods. ACS Catalysis, 2019, 9, 7238-7249.	11.2	27
77	Interfacial Control of Catalytic Activity in the Aldol Condensation: Combining the Effects of Hydrophobic Environments and Water. ACS Catalysis, 2019, 9, 5574-5582.	11.2	27
78	Dynamics of hydrogen at the surface of supported ruthenium. Physical Review B, 1994, 49, 2730-2738.	3.2	26
79	Catalytic oxidation of a thioether and dibenzothiophenes using an oxorhenium(V) dithiolate complex tethered on silica. Journal of Molecular Catalysis A, 2006, 243, 158-169.	4.8	26
80	Molecular ordering of mixed surfactants in mesoporous silicas: A solid-state NMR study. Solid State Nuclear Magnetic Resonance, 2011, 39, 65-71.	2.3	26
81	Direct ¹⁷ 0 dynamic nuclear polarization of single-site heterogeneous catalysts. Chemical Communications, 2018, 54, 3472-3475.	4.1	26
82	\hat{l}^2 -SiH-Containing Tris(silazido) Rare-Earth Complexes as Homogeneous and Grafted Single-Site Catalyst Precursors for Hydroamination. Organometallics, 2017, 36, 1142-1153.	2.3	25
83	Two-step conversion of Kraft lignin to nylon precursors under mild conditions. Green Chemistry, 2020, 22, 4676-4682.	9.0	25
84	Relationship Between Water Mobility and Viscosity of Nanometric Alumina Suspensions. Journal of the American Ceramic Society, 2005, 88, 2762-2768.	3.8	24
85	Determination of 27Al–29Si connectivities in zeolites with 2D 27Al→29Si RAPT–CPMG–HETCOR NMR. Solid State Nuclear Magnetic Resonance, 2008, 33, 76-81.	2.3	24
86	Full-Scale Ab Initio Simulation of Magic-Angle-Spinning Dynamic Nuclear Polarization. Journal of Physical Chemistry Letters, 2020, 11, 5655-5660.	4.6	24
87	DNP-enhanced ultrawideline ²⁰⁷ Pb solid-state NMR spectroscopy: an application to cultural heritage science. Dalton Transactions, 2017, 46, 3535-3540.	3.3	23
88	Silica-Supported Organolanthanum Catalysts for C–O Bond Cleavage in Epoxides. Journal of the American Chemical Society, 2020, 142, 2935-2947.	13.7	23
89	Large-scale <i>ab initio</i> simulations of MAS DNP enhancements using a Monte Carlo optimization strategy. Journal of Chemical Physics, 2018, 149, 154202.	3.0	22
90	Combining fast magic angle spinning dynamic nuclear polarization with indirect detection to further enhance the sensitivity of solid-state NMR spectroscopy. Solid State Nuclear Magnetic Resonance, 2020, 109, 101685.	2.3	22

#	Article	IF	Citations
91	Easily Prepared Chiral Scorpionates: Tris(2-oxazolinyl)boratoiridium(I) Compounds and Their Interactions with MeOTf. Inorganic Chemistry, 2008, 47, 10208-10210.	4.0	21
92	Measuring Long-Range ¹³ Câ€" ¹³ C Correlations on a Surface under Natural Abundance Using Dynamic Nuclear Polarization-Enhanced Solid-State Nuclear Magnetic Resonance. Journal of Physical Chemistry C, 2017, 121, 24687-24691.	3.1	21
93	Dry mechanochemical synthesis of alane from LiH and AlCl ₃ . Faraday Discussions, 2014, 170, 137-153.	3.2	20
94	Spatial distribution of organic functional groups supported on mesoporous silica nanoparticles (2): a study by ¹ H triple-quantum fast-MAS solid-state NMR. Physical Chemistry Chemical Physics, 2018, 20, 22203-22209.	2.8	20
95	Hydrazoneâ€Linked Heptazine Polymeric Carbon Nitrides for Synergistic Visibleâ€Lightâ€Driven Catalysis. Chemistry - A European Journal, 2020, 26, 7358-7364.	3.3	20
96	Using a Reactive Force Field To Correlate Mobilities Obtained from Solid-State ¹³ C NMR on Mesoporous Silica Nanoparticle Systems. Journal of Physical Chemistry C, 2011, 115, 16333-16339.	3.1	19
97	Condensed Phase Deactivation of Solid BrÃ,nsted Acids in the Dehydration of Fructose to Hydroxymethylfurfural. ACS Catalysis, 2019, 9, 11568-11578.	11.2	19
98	Adsorption, desorption, and interparticle motion of hydrogen on silicaâ€supported ruthenium: A study byinsitunuclear magnetic resonance. Journal of Chemical Physics, 1994, 101, 7262-7272.	3.0	18
99	Mechanochemical transformations in NaNH2-MgH2 mixtures. Journal of Alloys and Compounds, 2012, 513, 324-327.	5.5	18
100	Diffusivity and Structure of Room Temperature Ionic Liquid in Various Organic Solvents. Journal of Physical Chemistry B, 2020, 124, 9931-9937.	2.6	18
101	Synthesis of Supported Pd ⁰ Nanoparticles from a Single-Site Pd ²⁺ Surface Complex by Alkene Reduction. Chemistry of Materials, 2018, 30, 1032-1044.	6.7	17
102	31P NMR and IR characterization of enantioselective olefin and arene hydrogenation catalysts containing a rhodium–chiral phosphine complex tethered on silica. Journal of Molecular Catalysis A, 2003, 195, 63-82.	4.8	16
103	Mesoporous Aluminum Silicate Catalyst with Single-Type Active Sites:  Characterization by Solid-State NMR and Studies of Reactivity for Claisen Rearrangement Reactions. Journal of Physical Chemistry C, 2007, 111, 1480-1486.	3.1	16
104	Investigation of the thermochemical transformations in the LiAlH4–LiNH2 system. International Journal of Hydrogen Energy, 2011, 36, 10626-10634.	7.1	16
105	Reducing t1 noise through rapid scanning. Journal of Magnetic Resonance, 2019, 298, 31-34.	2.1	16
106	Solid-State NMR Study of Li-Assisted Dehydrogenation of Ammonia Borane. Inorganic Chemistry, 2012, 51, 4108-4115.	4.0	14
107	Optimizing the surface distribution of acid sites for cooperative catalysis in condensation reactions promoted by water. Chem Catalysis, 2021, 1, 1065-1087.	6.1	14
108	The role of alkali promoters in Fischer-Tropsch synthesis on Ru/SiO2 surfaces. Topics in Catalysis, 1995, 2, 59-69.	2.8	13

#	Article	IF	Citations
109	Interplay between Anomalous Transport and Catalytic Reaction Kinetics in Single-File Nanoporous Systems. ACS Catalysis, 2011, 1, 751-763.	11.2	13
110	Direct Spectroscopic Evidence for Isolated Silanols in SiO _{<i>x</i>} /Al ₂ O ₃ and Their Formation Mechanism. Journal of Physical Chemistry C, 2017, 121, 6060-6064.	3.1	13
111	Mechanochemical reactions and hydrogen storage capacities in MBH4–SiS2 systems (M Li or Na). International Journal of Hydrogen Energy, 2019, 44, 7381-7391.	7.1	13
112	Quantitative atomic-scale structure characterization of ordered mesoporous carbon materials by solid state NMR. Carbon, 2018, 131, 102-110.	10.3	12
113	Dynamic Nuclear Polarization of Metal-Doped Oxide Glasses: A Test of the Generality of Paramagnetic Metal Polarizing Agents. Journal of Physical Chemistry C, 2020, 124, 23126-23133.	3.1	12
114	Solid-State NMR Studies of Fossil Fuels using One- and Two-Dimensional Methods at High Magnetic Field. Energy & Energy & Fuels, 2012, 26, 4405-4412.	5.1	11
115	Enhanced 1H-X D-HMQC performance through improved 1H homonuclear decoupling. Solid State Nuclear Magnetic Resonance, 2019, 98, 12-18.	2.3	11
116	Revealing the Configuration and Conformation of Surface Organometallic Catalysts with DNP-Enhanced NMR. Journal of Physical Chemistry C, 2021, 125, 13433-13442.	3.1	11
117	Catalytic conversion reactions mediated by single-file diffusion in linear nanopores: Hydrodynamic versus stochastic behavior. Journal of Chemical Physics, 2011, 134, 114107.	3.0	10
118	Magnetic resonance imaging of DNP enhancements in a rotor spinning at the magic angle. Journal of Magnetic Resonance, 2016, 264, 125-130.	2.1	10
119	Natural Abundance 17 O DNPâ€NMR Provides Precise Oâ^'H Distances and Insights into the Brønsted Acidity of Heterogeneous Catalysts. Angewandte Chemie, 2017, 129, 9293-9297.	2.0	10
120	Determination of proton densities on silica gel catalyst supports by n-quantum coherence in NMR. Analytica Chimica Acta, 1993, 283, 1059-1079.	5.4	9
121	Comparison of Nitroaldol Reaction Mechanisms Using Accurate Ab Initio Calculations. Journal of Physical Chemistry A, 2008, 112, 10635-10649.	2.5	9
122	Linear-scaling <i>ab initio</i> simulations of spin diffusion in rotating solids. Journal of Chemical Physics, 2019, 151, 034110.	3.0	9
123	Efficiency analysis of helium-cooled MAS DNP: case studies of surface-modified nanoparticles and homogeneous small-molecule solutions. Physical Chemistry Chemical Physics, 2021, 23, 4919-4926.	2.8	9
124	Homonuclear dipolar recoupling of arbitrary pairs in multi-spin systems under magic angle spinning: A double-frequency-selective ZQ-SEASHORE experiment. Solid State Nuclear Magnetic Resonance, 2019, 101, 76-81.	2.3	8
125	Activation of Low-Valent, Multiply M–M Bonded Group VI Dimers toward Catalytic Olefin Metathesis via Surface Organometallic Chemistry. Organometallics, 2020, 39, 1035-1045.	2.3	8
126	Beyond the Active Site. Cp*ZrMe ₃ /Sulfated Aluminaâ€Catalyzed Olefin Polymerization Tacticity via Catalystâ‹â‹â‹Surface Ionâ€Pairing. ChemCatChem, 2021, 13, 2564-2569.	3.7	8

#	Article	IF	CITATIONS
127	Chapter 1. Heteronuclear Correlation Solid-state NMR Spectroscopy with Indirect Detection under Fast Magic-angle Spinning. New Developments in NMR, 2018, , 1-38.	0.1	8
128	Calcichrome: a re-examination of its structure and chemical properties by solid- and liquid-state NMR, infrared spectroscopy, and selective chemical degradation. Analytica Chimica Acta, 1989, 217, 31-42.	5.4	7
129	Determination of the Average Aromatic Cluster Size of Fossil Fuels by Solid-State NMR at High Magnetic Field. Energy & Solid-State NMR at High Magnetic Field. Energy & Solid-State NMR at High Magnetic Field.	5.1	7
130	Solvent- and catalyst-free mechanochemical synthesis of alkali metal monohydrides. Journal of Materials Chemistry A, 2016, 4, 12188-12196.	10.3	7
131	Mechanochemistry of the LiBH ₄ â€"AlCl ₃ System: Structural Characterization of the Products by Solid-State NMR. Journal of Physical Chemistry C, 2018, 122, 1955-1962.	3.1	7
132	An Interface between the Universal Force Field and the Effective Fragment Potential Method. Journal of Physical Chemistry B, 2008, 112, 12753-12760.	2.6	6
133	Spectral editing in 13C solid-state NMR at high magnetic field using fast MAS and spin-echo dephasing. Solid State Nuclear Magnetic Resonance, 2012, 47-48, 19-22.	2.3	6
134	Controlling reactivity of nanoporous catalyst materials by tuning reaction product-pore interior interactions: Statistical mechanical modeling. Journal of Chemical Physics, 2013, 138, 134705.	3.0	6
135	Beyond Simple Dilution: Superior Conductivities from Cosolvation of Acetonitrile/LiTFSI Concentrated Solution with Acetone. Journal of Physical Chemistry C, 2022, 126, 2788-2796.	3.1	6
136	Supported Hybrid Enzyme-Organocatalysts for Upgrading the Carbon Content of Alcohols. ACS Symposium Series, 2013, , 261-271.	0.5	4
137	Indirectly Detected DNPâ€Enhanced 17 O NMR Spectroscopy: Observation of Nonâ€Protonated Nearâ€Surface Oxygen at Naturally Abundant Silica and Silicaâ€Alumina. ChemPhysChem, 2021, 22, 1441-1445.	2.1	4
138	Quantitation of Protons in the Argonne Premium Coals by Solid-State $\langle \sup 1 \langle \sup H NMR Spectroscopy.$ Advances in Chemistry Series, 1992, , 359-376.	0.6	3
139	NMR and Theoretical Study of In-Pore Diffusivity of Ionic Liquid–Solvent Mixtures. Journal of Physical Chemistry B, 2022, 126, 4889-4898.	2.6	3
140	Virtual Special Issue on Catalysis at the U.S. Department of Energy's National Laboratories. ACS Catalysis, 2016, 6, 3227-3235.	11.2	2
141	The anomalous solidification of concrete grindings from acid treatment. Cement and Concrete Research, 2019, 116, 65-69.	11.0	1
142	Characterization of Nanostructured Organic-Inorganic Hybrid Materials Using Advanced Solid-State NMR Spectroscopy. Materials Research Society Symposia Proceedings, 2009, 1184, 171.	0.1	0
143	Preface to Memorial Issue in Honor of Professor Victor SY. Lin. ACS Catalysis, 2011, 1, 734-735.	11.2	0
144	Innentitelbild: Natural Abundance ¹⁷ O DNPâ€NMR Provides Precise Oâ^'H Distances and Insights into the Brønsted Acidity of Heterogeneous Catalysts (Angew. Chem. 31/2017). Angewandte Chemie, 2017, 129, 9032-9032.	2.0	0

#	Article	IF	CITATIONS
145	Synthesis and Characterization of Tris(oxazolinyl)borato Copper(II) and Copper(I) Complexes. Helvetica Chimica Acta, 2021, 104, e2000209.	1.6	O