
Michael Schöll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1341121/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasma pâ€ŧau231, pâ€ŧau181, <scp>PET</scp> Biomarkers, and Cognitive Change in Older Adults. Annals of Neurology, 2022, 91, 548-560.	5.3	42
2	Association of APOE É⁄4 and Plasma p-tau181 with Preclinical Alzheimer's Disease and Longitudinal Change in Hippocampus Function. Journal of Alzheimer's Disease, 2022, 85, 1309-1320.	2.6	11
3	Plasma and CSF NfL are differentially associated with biomarker evidence of neurodegeneration in a communityâ€based sample of 70â€yearâ€olds. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2022, 14, e12295.	2.4	11
4	CSF biomarkers and plasma pâ€ŧau181 as predictors of longitudinal tau accumulation: Implications for clinical trial design. Alzheimer's and Dementia, 2022, 18, 2614-2626.	0.8	22
5	Viral Antigen and Inflammatory Biomarkers in Cerebrospinal Fluid in Patients With COVID-19 Infection and Neurologic Symptoms Compared With Control Participants Without Infection or Neurologic Symptoms. JAMA Network Open, 2022, 5, e2213253.	5.9	35
6	Association of Plasma Biomarker Levels With Their CSF Concentration and the Number and Severity of Concussions in Professional Athletes. Neurology, 2022, 99, .	1.1	10
7	Imaging tau pathology in Alzheimer's disease with positron emission tomography: lessons learned from imaging-neuropathology validation studies. Molecular Neurodegeneration, 2022, 17, .	10.8	5
8	Time course of phosphorylated-tau181 in blood across the Alzheimer's disease spectrum. Brain, 2021, 144, 325-339.	7.6	124
9	Diagnostic performance and prediction of clinical progression of plasma phospho-tau181 in the Alzheimer's Disease Neuroimaging Initiative. Molecular Psychiatry, 2021, 26, 429-442.	7.9	186
10	Reduced [18F]flortaucipir retention in white matter hyperintensities compared to normal-appearing white matter. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 2283-2294.	6.4	9
11	Headâ€toâ€head comparison of amplified plasmonic exosome Aβ42 platform and singleâ€molecule array immunoassay in a memory clinic cohort. European Journal of Neurology, 2021, 28, 1479-1489.	3.3	11
12	Pre―and postoperative ⁶⁸ Gaâ€ĐOTATOC positron emission tomography for hormoneâ€secreting pituitary neuroendocrine tumours. Clinical Endocrinology, 2021, 94, 956-967.	2.4	7
13	Plasma p-tau231: a new biomarker for incipient Alzheimer's disease pathology. Acta Neuropathologica, 2021, 141, 709-724.	7.7	285
14	Differential associations of APOE-ε2 and APOE-ε4 alleles with PET-measured amyloid-β and tau deposition in older individuals without dementia. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 2212-2224.	6.4	29
15	Discriminatory ability of next-generation tau PET tracers for Alzheimer's disease. Brain, 2021, 144, 2284-2290.	7.6	29
16	Bispecific Tau Antibodies with Additional Binding to C1q or Alpha-Synuclein. Journal of Alzheimer's Disease, 2021, 80, 813-829.	2.6	2
17	Longitudinal Associations of Blood Phosphorylated Tau181 and Neurofilament Light Chain With Neurodegeneration in Alzheimer Disease. JAMA Neurology, 2021, 78, 396.	9.0	146
18	Tau Seeding Mouse Models with Patient Brain-Derived Aggregates. International Journal of Molecular Sciences, 2021, 22, 6132.	4.1	14

#	Article	IF	CITATIONS
19	A multicentre validation study of the diagnostic value of plasma neurofilament light. Nature Communications, 2021, 12, 3400.	12.8	219
20	Associations of Fully Automated CSF and Novel Plasma Biomarkers With Alzheimer Disease Neuropathology at Autopsy. Neurology, 2021, 97, .	1.1	50
21	Microglial activation and tau propagate jointly across Braak stages. Nature Medicine, 2021, 27, 1592-1599.	30.7	235
22	Blood-based high sensitivity measurements of beta-amyloid and phosphorylated tau as biomarkers of Alzheimer's disease: a focused review on recent advances. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 1231-1241.	1.9	51
23	Deep learning from MRI-derived labels enables automatic brain tissue classification on human brain CT. NeuroImage, 2021, 244, 118606.	4.2	13
24	The diagnostic and prognostic capabilities of plasma biomarkers in Alzheimer's disease. Alzheimer's and Dementia, 2021, 17, 1145-1156.	0.8	174
25	Current advances in digital cognitive assessment for preclinical Alzheimer's disease. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2021, 13, e12217.	2.4	63
26	Comparison of Two-Dimensional- and Three-Dimensional-Based U-Net Architectures for Brain Tissue Classification in One-Dimensional Brain CT. Frontiers in Computational Neuroscience, 2021, 15, 785244.	2.1	9
27	Tau pathology progression across PETâ€based stages of regional amyloid deposition. Alzheimer's and Dementia, 2021, 17, .	0.8	1
28	Impact of reduced injected dose on the quantification of [¹⁸ F]RO948 and [¹⁸ F]Flortaucipir PET for <i>in vivo</i> tau pathology. Alzheimer's and Dementia, 2021, 17, .	0.8	0
29	When is a biomarker an AD biomarker? Face versus construct validity and practical implications for differential application. Alzheimer's and Dementia, 2021, 17, .	0.8	0
30	Brain atrophy and white matter hyperintensities are independently associated with plasma neurofilament light chain in an Asian cohort of patients with mixed pathology. Alzheimer's and Dementia, 2021, 17, .	0.8	0
31	Associations of fully automated Elecsys CSF and novel plasma biomarkers with Alzheimer's disease neuropathology. Alzheimer's and Dementia, 2021, 17, .	0.8	0
32	Current status and quantitative results of the AMYPAD prognostic and natural history study. Alzheimer's and Dementia, 2021, 17, .	0.8	0
33	Association of cerebrospinal fluid and plasma biomarkers with longitudinal tau accumulation. Alzheimer's and Dementia, 2021, 17, .	0.8	0
34	Plasma and cerebrospinal fluid neurofilament light protein concentrations are differentially associated with biomarker evidence of neurodegeneration in a communityâ€based population of 70â€yearâ€olds. Alzheimer's and Dementia, 2021, 17, .	0.8	0
35	Association of deepâ€learning–derived brain computed tomography measures with cognition and bloodâ€based biomarkers of neurodegenerative diseases. Alzheimer's and Dementia, 2021, 17, .	0.8	0
36	Propagation of Tau Pathology: Integrating Insights From Postmortem and InÂVivo Studies. Biological Psychiatry, 2020, 87, 808-818.	1.3	50

#	Article	IF	CITATIONS
37	Head-to-head comparison of tau positron emission tomography tracers [18F]flortaucipir and [18F]RO948. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 342-354.	6.4	61
38	Does early cognitive decline require the presence of both tau and amyloid-β?. Brain, 2020, 143, 10-13.	7.6	9
39	Lower ⁶⁸ Gaâ€DOTATOC uptake in nonfunctioning pituitary neuroendocrine tumours compared to normal pituitary gland—A proofâ€ofâ€concept study. Clinical Endocrinology, 2020, 92, 222-231.	2.4	11
40	Stage-specific links between plasma neurofilament light and imaging biomarkers of Alzheimer's disease. Brain, 2020, 143, 3793-3804.	7.6	60
41	CTâ€based brain segmentation and volumetry using deep learning methods. Alzheimer's and Dementia, 2020, 16, e045824.	0.8	0
42	Relevance of biomarkers across different neurodegenerative diseases. Alzheimer's Research and Therapy, 2020, 12, 56.	6.2	42
43	Perspectives in fluid biomarkers in neurodegeneration from the 2019 biomarkers in neurodegenerative diseases course—a joint PhD student course at University College London and University of Gothenburg. Alzheimer's Research and Therapy, 2020, 12, 20.	6.2	32
44	University College London/University of Gothenburg PhD course "Biomarkers in neurodegenerative diseases―2019—course organisation. Alzheimer's Research and Therapy, 2020, 12, 18.	6.2	0
45	Imaging biomarkers in neurodegeneration: current and future practices. Alzheimer's Research and Therapy, 2020, 12, 49.	6.2	96
46	An update on blood-based biomarkers for non-Alzheimer neurodegenerative disorders. Nature Reviews Neurology, 2020, 16, 265-284.	10.1	121
47	Blood phosphorylated tau 181 as a biomarker for Alzheimer's disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurology, The, 2020, 19, 422-433.	10.2	668
48	PET Biomarkers for Tau Pathology. , 2020, , 227-234.		0
49	Regional times to equilibria and their impact on semi-quantification of [18F]AV-1451 uptake. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 2223-2232.	4.3	5
50	Prognostic value of Alzheimer's biomarkers in mild cognitive impairment: the effect of age at onset. Journal of Neurology, 2019, 266, 2535-2545.	3.6	11
51	Comparative analysis of obesity-related cardiometabolic and renal biomarkers in human plasma and serum. Scientific Reports, 2019, 9, 15385.	3.3	19
52	Increased plasma neurofilament light chain concentration correlates with severity of post-mortem neurofibrillary tangle pathology and neurodegeneration. Acta Neuropathologica Communications, 2019, 7, 5.	5.2	125
53	Plasma neurofilament light associates with Alzheimer's disease metabolic decline in amyloidâ€positive individuals. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2019, 11, 679-689.	2.4	48
54	Predicting diagnosis and cognition with ¹⁸ Fâ€AVâ€1451 tau PET and structural MRI in Alzheimer's disease. Alzheimer's and Dementia, 2019, 15, 570-580.	0.8	84

#	Article	IF	CITATIONS
55	Synaptic vesicle protein 2A as a potential biomarker in synaptopathies. Molecular and Cellular Neurosciences, 2019, 97, 34-42.	2.2	55
56	A plasma protein classifier for predicting amyloid burden for preclinical Alzheimer's disease. Science Advances, 2019, 5, eaau7220.	10.3	59
57	A walk through tau therapeutic strategies. Acta Neuropathologica Communications, 2019, 7, 22.	5.2	211
58	O1â€07â€02: LONGITUDINAL ASSOCIATIONS BETWEEN PLASMA NFL AND VOXELâ€BASED MORPHOMETRY IN ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2019, 15, .	0.8	0
59	F4â€05â€01: ASSOCIATIONS BETWEEN PLASMA NFL AND BRAIN PET IN ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2019, 15, P1224.	0.8	Ο
60	O2â€05â€01: CEREBROSPINAL FLUID SYNAPTIC VESICLE GLYCOPROTEIN 2A IN ALZHEIMER'S DISEASE. Alzheimer and Dementia, 2019, 15, P545.		2
61	ICâ€Pâ€070: ASSOCIATIONS BETWEEN PLASMA NFL AND BRAIN PET IN THE ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2019, 15, P64.	0.8	1
62	ICâ€₽â€071: ASSOCIATIONS BETWEEN PLASMA NFL AND BRAIN ATROPHY IN ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2019, 15, P65.	0.8	0
63	ICâ€Pâ€072: LONGITUDINAL ASSOCIATIONS BETWEEN PLASMA NFL AND VOXELâ€BASED MORPHOMETRY IN ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2019, 15, P66.	0.8	0
64	Dataâ€driven approaches for tauâ€PET imaging biomarkers in Alzheimer's disease. Human Brain Mapping, 2019, 40, 638-651.	3.6	27
65	Biomarkers for tau pathology. Molecular and Cellular Neurosciences, 2019, 97, 18-33.	2.2	163
66	O5â€01â€01: HEADâ€TOâ€HEAD IN VIVO COMPARISON OF TAU POSITRON EMISSION TOMOGRAPHY LIGANDS ¹⁸ Fâ€FLORTAUCIPIR AND ¹⁸ Fâ€RO948. Alzheimer's and Dementia, 2019, 15, .	0.8	1
67	Comparing ¹⁸ F-AV-1451 with CSF t-tau and p-tau for diagnosis of Alzheimer disease. Neurology, 2018, 90, e388-e395.	1.1	83
68	18F-AV-1451 in Parkinson's Disease with and without dementia and in Dementia with Lewy Bodies. Scientific Reports, 2018, 8, 4717.	3.3	59
69	ICâ€Pâ€218: ¹⁸ Fâ€FLORTAUCIPIR (AVâ€1451) RETENTION IN PARKINSON'S DISEASE AND DEMENTI LEWY BODIES. Alzheimer's and Dementia, 2018, 14, P178.	A WITH	0
70	P3â€⊋43: THE ASSOCIATION OF LONGITUDINAL PLASMA NFL WITH POSTMORTEM NEUROPATHOLOGY. Alzheimer's and Dementia, 2018, 14, P1165.	0.8	0
71	Discriminative Accuracy of [¹⁸ F]flortaucipir Positron Emission Tomography for Alzheimer Disease vs Other Neurodegenerative Disorders. JAMA - Journal of the American Medical Association, 2018, 320, 1151.	7.4	298
72	Chronic depressive symptomatology and CSF amyloid beta and tau levels in mild cognitive impairment. International Journal of Geriatric Psychiatry, 2018, 33, 1305-1311.	2.7	16

#	Article	IF	CITATIONS
73	No association of salivary total tau concentration with Alzheimer's disease. Neurobiology of Aging, 2018, 70, 125-127.	3.1	51
74	Effects of APOE ε4 on neuroimaging, cerebrospinal fluid biomarkers, and cognition in prodromal Alzheimer's disease. Neurobiology of Aging, 2018, 71, 81-90.	3.1	15
75	Molecular properties underlying regional vulnerability to Alzheimer's disease pathology. Brain, 2018, 141, 2755-2771.	7.6	89
76	Reduced penetrance of the PSEN1 H163Y autosomal dominant Alzheimer mutation: a 22-year follow-up study. Alzheimer's Research and Therapy, 2018, 10, 45.	6.2	11
77	Update on biomarkers for amyloid pathology in Alzheimer's disease. Biomarkers in Medicine, 2018, 12, 799-812.	1.4	59
78	Detection of Alzheimer's Disease. Yale Journal of Biology and Medicine, 2018, 91, 291-300.	0.2	21
79	The continuum of spreading depolarizations in acute cortical lesion development: Examining Leão's legacy. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 1571-1594.	4.3	297
80	Recording, analysis, and interpretation of spreading depolarizations in neurointensive care: Review and recommendations of the COSBID research group. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 1595-1625.	4.3	255
81	Amyloid and tau PET demonstrate region-specific associations in normal older people. NeuroImage, 2017, 150, 191-199.	4.2	67
82	<scp>I</scp> ncreased basal ganglia binding of ¹⁸ <scp>Fâ€AVâ€1451</scp> in patients with progressive supranuclear palsy. Movement Disorders, 2017, 32, 108-114.	3.9	111
83	Linking Amyloid-Î ² and Tau Deposition in Alzheimer Disease. JAMA Neurology, 2017, 74, 766.	9.0	10
84	Tau neuropathology correlates with FDG-PET, but not AV-1451-PET, in progressive supranuclear palsy. Acta Neuropathologica, 2017, 133, 149-151.	7.7	61
85	Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nature Communications, 2017, 8, 1214.	12.8	596
86	In vivo retention of ¹⁸ F-AV-1451 in corticobasal syndrome. Neurology, 2017, 89, 845-853.	1.1	103
87	¹⁸ Fâ€AVâ€1451 and CSF Tâ€tau and Pâ€tau as biomarkers in Alzheimer's disease. EMBO Molecular Medicine, 2017, 9, 1212-1223.	6.9	156
88	[ICâ€Pâ€199]: [18]Fâ€AVâ€1451 PET IN CLINICALLY DIAGNOSED CORTICOBASAL DEGENERATION. Alzheimer's a Dementia, 2017, 13, P146.	nd 0.8	0
89	[O1–O6–O6]: SPATIAL CORRESPONDENCE OF ALZHEIMER'S DISEASEâ€RELATED TAU PATHOLOGY AND GREN MATTER ATROPHY DISTRIBUTION WITH INTRINSIC FUNCTIONAL BRAIN NETWORKS. Alzheimer's and Dementia, 2017, 13, P203.	(0.8	0
90	[P4–407]: REGIONAL DIFFERENCES IN THE TRANSIENT EQUILIBRIUM OF [¹⁸ F]AVâ€1451 AND THE IMPACT ON TISSUE UPTAKE RATIOS. Alzheimer's and Dementia, 2017, 13, P1486.	EIR 0.8	0

#	ARTICLE	IF	CITATIONS
91	[P4–502]: THE EARLIEST STAGES OF AMYLOID ACCUMULATION ARE ASSOCIATED WITH INCREASED FUNCTIONAL CONNECTIVITY IN NONâ€ÐEMENTED ELDERLY SUBJECTS. Alzheimer's and Dementia, 2017, 13, P1531.	0.8	0
92	[P4–525]: DATAâ€ÐRIVEN TAUâ€PET COVARIANCE NETWORKS ENHANCE PREDICTION OF RETROSPECTIVE COGNITIVE CHANGE IN ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2017, 13, P1548.	0.8	1
93	Distinct 18F-AV-1451 tau PET retention patterns in early- and late-onset Alzheimer's disease. Brain, 2017, 140, 2286-2294.	7.6	149
94	Tau Pathology Distribution in Alzheimer's disease Corresponds Differentially to Cognition-Relevant Functional Brain Networks. Frontiers in Neuroscience, 2017, 11, 167.	2.8	87
95	[ICâ€Pâ€195]: SPATIAL CORRESPONDENCE OF ALZHEIMER's DISEASEâ€RELATED TAU PATHOLOGY AND GREY M. ATROPHY DISTRIBUTION WITH INTRINSIC FUNCTIONAL BRAIN NETWORKS. Alzheimer's and Dementia, 2017, 13, P143.	ATTER 0.8	0
96	¹⁸ F-AV-1451 tau PET imaging correlates strongly with tau neuropathology in <i>MAPT</i> mutation carriers. Brain, 2016, 139, 2372-2379.	7.6	149
97	P4â€339: Early―and Lateâ€Onset Alzheimer'S Disease are Associated with Distinct Regional TAU Pathology Examined with [18]Fâ€AVâ€1451 TAU Positron Emission Tomography. Alzheimer's and Dementia, 2016, 12, P1164.	as 0.8	0
98	IC-P-193: Examining Amyloid and TAU Inter-Regional PET Association Patterns in Cognitively Normal Older Adults. , 2016, 12, P139-P140.		0
99	P1â€318: TAUâ€PET Patterns Overlap and Exceed Hypometabolism in Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P545.	0.8	2
100	O3â€08â€04: Tau Covariance Patterns in Alzheimer's Disease Patients Resemble Intrinsic Connectivity Networks in Young Adults. Alzheimer's and Dementia, 2016, 12, P305.	0.8	0
101	O4-09-01: An Nrem Sleep Signature of Human in Vivo TAU Burden. , 2016, 12, P353-P353.		0
102	PET Imaging of Tau Deposition in the Aging Human Brain. Neuron, 2016, 89, 971-982.	8.1	899
103	Accelerating rates of cognitive decline and imaging markers associated with β-amyloid pathology. Neurology, 2016, 86, 1887-1896.	1.1	42
104	ICâ€₽â€192: TAU Covariance Patterns in ad Patients Resemble Intrinsic Connectivity Networks in Young Adults. Alzheimer's and Dementia, 2016, 12, P138.	0.8	0
105	Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer's disease. Brain, 2016, 139, 922-936.	7.6	235
106	Comparison of Early-Phase ¹¹ C-Deuterium-l-Deprenyl and ¹¹ C-Pittsburgh Compound B PET for Assessing Brain Perfusion in Alzheimer Disease. Journal of Nuclear Medicine, 2016, 57, 1071-1077.	5.0	63
107	Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer's disease. Brain, 2016, 139, 1551-1567.	7.6	833
108	IC-P-126: Divergent pattern of changes in astrocytosis and fibrillar amyloid plaques as measured by PET in autosomal-dominant and sporadic Alzheimer's disease. , 2015, 11, P86-P86.		0

#	Article	IF	CITATIONS
109	IC-P-161: Tau PET with [18 F]AV1451 in non-alzheimer's disease neurodegenerative syndromes. , 2015, 11, P107-P109.		4
110	IC-02-02: Distinct [18 F]AV1451 retention patterns in clinical variants of Alzheimer's disease. , 2015, 11, P5-P6.		1
111	IC-01-05: In vivo braak staging using 18F-AV1451 Tau PET imaging. , 2015, 11, P4-P4.		5
112	Early astrocytosis in autosomal dominant Alzheimer's disease measured in vivo by multi-tracer positron emission tomography. Scientific Reports, 2015, 5, 16404.	3.3	110
113	IC-P-157: Associations of [18 F]AV1451 Tau PET with age, ApoE genotype, and cognition in Alzheimer's disease. , 2015, 11, P105-P106.		Ο
114	Multimodality Imaging Approaches in Alzheimer's disease. Part II: 1H MR spectroscopy, FDG PET and Amyloid PET. Dementia E Neuropsychologia, 2015, 9, 330-342.	0.8	4
115	Multimodality Imaging Approach in Alzheimer disease. Part I: Structural MRI, Functional MRI, Diffusion Tensor Imaging and Magnetization Transfer Imaging. Dementia E Neuropsychologia, 2015, 9, 318-329.	0.8	19
116	Prediction of AD dementia by biomarkers following the NIAâ€AA andÂIWG diagnostic criteria in MCI patients from three European memory clinics. Alzheimer's and Dementia, 2015, 11, 1191-1201.	0.8	71
117	IC-P-168: Examining relations of age and beta-amyloid with tau deposition measured using 18F-AV-1451 in cognitively normal older adults. , 2015, 11, P111-P112.		Ο
118	O1-07-02: Alzheimer's disease core biomarkers and prediction of dementia in MCI: The effect of age at onset. , 2015, 11, P140-P142.		0
119	F2-03-01: Tau and amyloid neuroimaging of ad phenotypes. , 2015, 11, P167-P167.		0
120	O5-01-04: Cognitive decline in healthy elderly is related to temporal lobe tau but not to cortical β-amyloid: An 18F-AV1451 and 11C-PiB PET study. , 2015, 11, P313-P314.		0
121	Mild cognitive impairment with suspected nonamyloid pathology (SNAP). Neurology, 2015, 84, 508-515.	1.1	122
122	Amyloid biomarkers in Alzheimer's disease. Trends in Pharmacological Sciences, 2015, 36, 297-309.	8.7	404
123	Astrocytosis measured by 11C-deprenyl PET correlates with decrease in gray matter density in the parahippocampus of prodromal Alzheimer's patients. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41, 2120-2126.	6.4	53
124	Fluorodeoxyglucose PET in Neurology and Psychiatry. PET Clinics, 2014, 9, 371-390.	3.0	58
125	O2-13-03: MILD COGNITIVE IMPAIRMENT WITH SUSPECTED NON AD PATHOLOGY (SNAP): PREDICTION OF PROGRESSION TO DEMENTIA. , 2014, 10, P194-P195.		0
126	Prediction of dementia in MCI patients based on core diagnostic markers for Alzheimer disease. Neurology, 2013, 80, 1048-1056.	1.1	161

#	ARTICLE	IF	CITATIONS
127	Combination of 18F-FDG PET and Cerebrospinal Fluid Biomarkers as a Better Predictor of the Progression to Alzheimer's Disease in Mild Cognitive Impairment Patients. Journal of Alzheimer's Disease, 2013, 33, 929-939.	2.6	48
128	Cortical Spreading Depression Dynamics Can Be Studied Using Intrinsic Optical Signal Imaging in Gyrencephalic Animal Cortex. , 2013, 118, 93-97.		13
129	Evidence for Astrocytosis in Prodromal Alzheimer Disease Provided by ¹¹ C-Deuterium-L-Deprenyl: A Multitracer PET Paradigm Combining ¹¹ C-Pittsburgh Compound B and ¹⁸ F-FDG. Journal of Nuclear Medicine, 2012, 53, 37-46.	5.0	354
130	Low PiB PET retention in presence of pathologic CSF biomarkers in Arctic <i>APP</i> mutation carriers. Neurology, 2012, 79, 229-236.	1.1	138
131	Glucose metabolism and PIB binding in carriers of a His163Tyr presenilin 1 mutation. Neurobiology of Aging, 2011, 32, 1388-1399.	3.1	48
132	Biomarkers for Microglial Activation in Alzheimer's Disease. International Journal of Alzheimer's Disease, 2011, 2011, 1-5.	2.0	23
133	Time Course of Glucose Metabolism in Relation to Cognitive Performance and Postmortem Neuropathology in Met146Val PSEN1 Mutation Carriers. Journal of Alzheimer's Disease, 2011, 24, 495-506.	2.6	30
134	Positron emission tomography imaging and clinical progression in relation to molecular pathology in the first Pittsburgh Compound B positron emission tomography patient with Alzheimer's disease. Brain, 2011, 134, 301-317.	7.6	126

9