
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1339684/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Novel Imaging Marker for Small Vessel Disease Based on Skeletonization of White Matter Tracts and Diffusion Histograms. Annals of Neurology, 2016, 80, 581-592.	5.3	250
2	Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) as a model of small vessel disease: update on clinical, diagnostic, and management aspects. BMC Medicine, 2017, 15, 41.	5.5	212
3	Incident subcortical infarcts induce focal thinning in connected cortical regions. Neurology, 2012, 79, 2025-2028.	1.1	189
4	Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data. NeuroImage, 2012, 59, 2217-2230.	4.2	172
5	Strategic role of frontal white matter tracts in vascular cognitive impairment: a voxel-based lesion-symptom mapping study in CADASIL. Brain, 2011, 134, 2366-2375.	7.6	163
6	Cerebral microbleeds and stroke risk after ischaemic stroke or transient ischaemic attack: a pooled analysis of individual patient data from cohort studies. Lancet Neurology, The, 2019, 18, 653-665.	10.2	143
7	Incident lacunes preferentially localize to the edge of white matter hyperintensities: insights into the pathophysiology of cerebral small vessel disease. Brain, 2013, 136, 2717-2726.	7.6	141
8	Apathy. Neurology, 2009, 72, 905-910.	1.1	131
9	In-vivo measurement of cortical morphology: means and meanings. Current Opinion in Neurology, 2010, 23, 359-367.	3.6	127
10	Impact of MRI markers in subcortical vascular dementia: A multi-modal analysis in CADASIL. Neurobiology of Aging, 2010, 31, 1629-1636.	3.1	124
11	R2* mapping for brain iron: associations with cognition in normal aging. Neurobiology of Aging, 2015, 36, 925-932.	3.1	122
12	Prefrontal cortex dysfunction in patients with suicidal behavior. Psychological Medicine, 2007, 37, 411.	4.5	118
13	Strategic white matter tracts for processing speed deficits in age-related small vessel disease. Neurology, 2014, 82, 1946-1950.	1.1	116
14	Free water determines diffusion alterations and clinical status in cerebral small vessel disease. Alzheimer's and Dementia, 2018, 14, 764-774.	0.8	108
15	The effect of NOTCH3 pathogenic variant position on CADASIL disease severity: NOTCH3 EGFr 1–6 pathogenic variant are associated with a more severe phenotype and lower survival compared with EGFr 7–34 pathogenic variant. Genetics in Medicine, 2019, 21, 676-682.	2.4	102
16	Brain Atrophy Is Related to Lacunar Lesions and Tissue Microstructural Changes in CADASIL. Stroke, 2007, 38, 1786-1790.	2.0	100
17	Mild Cognitive Impairment: Baseline and Longitudinal Structural MR Imaging Measures Improve Predictive Prognosis. Radiology, 2011, 259, 834-843.	7.3	84
18	Detecting global and local hippocampal shape changes in Alzheimer's disease using statistical shape models. NeuroImage, 2012, 59, 2155-2166.	4.2	82

#	Article	IF	CITATIONS
19	METACOHORTS for the study of vascular disease and its contribution to cognitive decline and neurodegeneration: An initiative of the Joint Programme for Neurodegenerative Disease Research. Alzheimer's and Dementia, 2016, 12, 1235-1249.	0.8	82
20	Predictors of Clinical Worsening in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. Stroke, 2016, 47, 4-11.	2.0	81
21	Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1319-1337.	4.3	80
22	Intracortical Infarcts in Small Vessel Disease. Stroke, 2011, 42, e27-30.	2.0	74
23	Prevalence and characteristics of migraine in CADASIL. Cephalalgia, 2016, 36, 1038-1047.	3.9	73
24	Cortical changes in cerebral small vessel diseases: a 3D MRI study of cortical morphology in CADASIL. Brain, 2008, 131, 2201-2208.	7.6	71
25	Harmonizing brain magnetic resonance imaging methods for vascular contributions to neurodegeneration. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2019, 11, 191-204.	2.4	65
26	Hippocampal volume is an independent predictor of cognitive performance in CADASIL. Neurobiology of Aging, 2009, 30, 890-897.	3.1	63
27	Identification of a strategic brain network underlying processing speed deficits in vascular cognitive impairment. NeuroImage, 2013, 66, 177-183.	4.2	62
28	Determinants of iron accumulation in the normal aging brain. Neurobiology of Aging, 2016, 43, 149-155.	3.1	59
29	Dilated Perivascular Spaces in Small-Vessel Disease: A Study in CADASIL. Cerebrovascular Diseases, 2014, 37, 155-163.	1.7	58
30	Education modifies the relation of vascular pathology to cognitive function: cognitive reserve in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Neurobiology of Aging, 2013, 34, 400-407.	3.1	54
31	Brain atrophy in cerebral small vessel diseases: Extent, consequences, technical limitations and perspectives: The HARNESS initiative. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 231-245.	4.3	49
32	Contrast-Based Fully Automatic Segmentation of White Matter Hyperintensities: Method and Validation. PLoS ONE, 2012, 7, e48953.	2.5	49
33	Impact of regional cortical and subcortical changes on processing speed in cerebral small vessel disease. NeuroImage: Clinical, 2013, 2, 854-861.	2.7	48
34	Consensus statement on current and emerging methods for the diagnosis and evaluation of cerebrovascular disease. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1391-1417.	4.3	48
35	Effects of Gender on the Phenotype of CADASIL. Stroke, 2012, 43, 137-141.	2.0	46
36	Loss of Venous Integrity in Cerebral Small Vessel Disease. Stroke, 2014, 45, 2124-2126.	2.0	43

#	Article	IF	CITATIONS
37	Cortical Superficial Siderosis in Different Types of Cerebral Small Vessel Disease. Stroke, 2017, 48, 1404-1407.	2.0	40
38	Apathy is related to cortex morphology in CADASIL. Neurology, 2011, 76, 1472-1477.	1.1	37
39	Development of imaging-based risk scores for prediction of intracranial haemorrhage and ischaemic stroke in patients taking antithrombotic therapy after ischaemic stroke or transient ischaemic attack: a pooled analysis of individual patient data from cohort studies. Lancet Neurology, The, 2021, 20, 294-303.	10.2	37
40	Verbal memory impairment in subcortical ischemic vascular disease. Neurobiology of Aging, 2011, 32, 2172-2182.	3.1	34
41	Longitudinal changes of cortical morphology in CADASIL. Neurobiology of Aging, 2012, 33, 1002.e29-1002.e36.	3.1	34
42	Magnetization Transfer Ratio Relates to Cognitive Impairment in Normal Elderly. Frontiers in Aging Neuroscience, 2014, 6, 263.	3.4	34
43	Updates on Prevention of Hemorrhagic and Lacunar Strokes. Journal of Stroke, 2018, 20, 167-179.	3.2	34
44	Genome-Wide Genotyping Demonstrates a Polygenic Risk Score Associated With White Matter Hyperintensity Volume in CADASIL. Stroke, 2014, 45, 968-972.	2.0	33
45	Extensive White Matter Hyperintensities May Increase Brain Volume in Cerebral Autosomal-Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. Stroke, 2012, 43, 3252-3257.	2.0	31
46	White Matter Edema at the Early Stage of Cerebral Autosomal-Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. Stroke, 2015, 46, 258-261.	2.0	29
47	Alterations of the cerebral cortex in sporadic small vessel disease: A systematic review of inÂvivo MRI data. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 681-695.	4.3	29
48	Cerebral Microbleeds and the Risk of Incident Ischemic Stroke in CADASIL (Cerebral Autosomal) Tj ETQq0 0 0 rgB 2699-2703.	T /Overloo 2.0	ck 10 Tf 50 30 29
49	Cerebral Atrophy in Cerebrovascular Disorders. Journal of Neuroimaging, 2010, 20, 213-218.	2.0	28
50	<i>APOE É</i> 2 is associated with white matter hyperintensity volume in CADASIL. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 199-203.	4.3	28
51	Measurement of brain atrophy in subcortical vascular disease: A comparison of different approaches and the impact of ischaemic lesions. NeuroImage, 2008, 43, 312-320.	4.2	27
52	Reaction Time is a Marker of Early Cognitive and Behavioral Alterations in Pure Cerebral Small Vessel Disease. Journal of Alzheimer's Disease, 2015, 47, 413-419.	2.6	27
53	Using CSF biomarkers to replicate genetic associations in Alzheimer's disease. Neurobiology of Aging, 2012, 33, 1486.e9-1486.e15.	3.1	25
54	Predictors and Clinical Impact of Incident Lacunes in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. Stroke, 2017, 48, 283-289.	2.0	25

#	Article	IF	CITATIONS
55	Different types of white matter hyperintensities in CADASIL: Insights from 7-Tesla MRI. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1654-1663.	4.3	25
56	Three-Dimensional MRI Analysis of Individual Volume of Lacunes in CADASIL. Stroke, 2009, 40, 124-128.	2.0	24
57	Prediction of 3-year clinical course in CADASIL. Neurology, 2016, 87, 1787-1795.	1.1	24
58	ADULT-ONSET VANISHING WHITE MATTER LEUKOENCEPHALOPATHY PRESENTING AS PSYCHOSIS. Neurology, 2007, 68, 1538-1539.	1.1	23
59	In Vivo High-Resolution 7 Tesla MRI Shows Early and Diffuse Cortical Alterations in CADASIL. PLoS ONE, 2014, 9, e106311.	2.5	23
60	Clinical correlates of longitudinal MRI changes in CADASIL. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1299-1305.	4.3	22
61	Acute ischemic stroke in adolescents. Neurology, 2020, 94, e158-e169.	1.1	22
62	Different Types of White Matter Hyperintensities in CADASIL. Frontiers in Neurology, 2018, 9, 526.	2.4	21
63	Sulcal Span in Azheimer's Disease, Amnestic Mild Cognitive Impairment, and Healthy Controls. Journal of Alzheimer's Disease, 2012, 29, 605-613.	2.6	20
64	White-Matter Lesions without Lacunar Infarcts in CADASIL. Journal of Alzheimer's Disease, 2012, 29, 903-911.	2.6	20
65	ADC Histograms from Routine DWI for Longitudinal Studies in Cerebral Small Vessel Disease: A Field Study in CADASIL. PLoS ONE, 2014, 9, e97173.	2.5	20
66	Validation and Optimization of BIANCA for the Segmentation of Extensive White Matter Hyperintensities. Neuroinformatics, 2018, 16, 269-281.	2.8	20
67	Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. Stroke, 2020, 51, 21-28.	2.0	19
68	Decreased T1 Contrast between Gray Matter and Normal-Appearing White Matter in CADASIL. American Journal of Neuroradiology, 2014, 35, 72-76.	2.4	18
69	Cortical folding influences migraine aura symptoms in CADASIL. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 213-216.	1.9	16
70	Susac syndrome: A scoping review. Autoimmunity Reviews, 2022, 21, 103097.	5.8	16
71	Diffusion magnetic resonance imaging in cerebral small vessel disease. Revue Neurologique, 2017, 173, 201-210.	1.5	15
72	A cortical form of CADASIL with cerebral Aβ amyloidosis. Acta Neuropathologica, 2010, 120, 813-820.	7.7	14

#	Article	IF	CITATIONS
73	Cerebral Amyloid Angiopathy Related Inflammation With Prominent Meningeal Involvement. A Report of 2 Cases. Frontiers in Neurology, 2019, 10, 984.	2.4	13
74	Cognitive dysfunction and brain atrophy in Susac syndrome. Journal of Neurology, 2020, 267, 994-1003.	3.6	13
75	Shape of the Central Sulcus and Disability After Subcortical Stroke. Stroke, 2016, 47, 1023-1029.	2.0	12
76	Heterozygous <i>HTRA1</i> nonsense or frameshift mutations are pathogenic. Brain, 2021, 144, 2616-2624.	7.6	12
77	NIHSS Scores in Ischemic Small Vessel Disease: A Study in CADASIL. Cerebrovascular Diseases, 2012, 34, 419-423.	1.7	11
78	Features and Determinants of Lacune Shape. Stroke, 2016, 47, 1258-1264.	2.0	11
79	Neurological presentation of schistosomiasis. Lancet, The, 2013, 381, 1788.	13.7	9
80	Lower Magnetization Transfer Ratio in the Forceps Minor Is Associated with Poorer Gait Velocity in Older Adults. American Journal of Neuroradiology, 2017, 38, 500-506.	2.4	9
81	Reaction Time Is Negatively Associated with Corpus Callosum Area in the Early Stages of CADASIL. American Journal of Neuroradiology, 2017, 38, 2094-2099.	2.4	9
82	Cerebral Microhemorrhages: Significance, Associations, Diagnosis, and Treatment. Current Treatment Options in Neurology, 2016, 18, 35.	1.8	8
83	A rare cause of gait ataxia. Lancet, The, 2011, 378, 1274.	13.7	6
84	Focal Macroscopic Cortical Lesions in Cerebral Autosomal-Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. Stroke, 2017, 48, 1408-1411.	2.0	6
85	Why Are Only Some Subcortical Ischemic Lesions on Diffusion Magnetic Resonance Imaging Associated With Stroke Symptoms in Small Vessel Disease?. Stroke, 2018, 49, 1920-1923.	2.0	6
86	Alteration of the Cortex Shape as a Proxy of White Matter Swelling in Severe Cerebral Small Vessel Disease. Frontiers in Neurology, 2019, 10, 753.	2.4	5
87	Imaging of the aging brain and development of MRI signal abnormalities. Revue Neurologique, 2020, 176, 661-669.	1.5	5
88	Vanishing White Matter Hyperintensities in CADASIL: A Case Report with Insight into Disease Mechanisms. Journal of Alzheimer's Disease, 2020, 78, 907-910.	2.6	4
89	Partie 1Â: Maladies des petites artères cérébrales liées à l'âge et à l'hypertension. Pratique Ne - FMC, 2012, 3, 197-205.	urologique	2
90	Pure psychiatric presentation of Fragile Xâ€associated tremor/ataxia syndrome. European Journal of Neurology, 2013, 20, e113-4.	3.3	2

#	Article	IF	CITATIONS
91	Arterial branching and basal ganglia lacunes: A study in pure small vessel disease. European Stroke Journal, 2017, 2, 264-271.	5.5	2
92	Cerebral Small-Vessel Diseases: A Look Back from 1991 to Today. Cerebrovascular Diseases, 2022, 51, 131-137.	1.7	2
93	Editorial: Cerebral Small Vessel Diseases: From Vessel Alterations to Cortical Parenchymal Injury. Frontiers in Neurology, 2020, 11, 92.	2.4	1
94	Brain magnetic resonance imaging lesion load at diagnosis, severity at onset and outcomes in Susac syndrome: A prospective cohort study. European Journal of Neurology, 2022, 29, 121-129.	3.3	1
95	The Epidermal Growth Factor Domain of the Mutation Does Not Appear to Influence Disease Progression in CADASIL When Brain Volume and Sex Are Taken into Account. American Journal of Neuroradiology, 2022, , .	2.4	1
96	Trajectory Pattern of Cognitive Decline in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. Neurology, 2022, 99, .	1.1	1
97	Partie 2Â: angiopathie amyloÃ⁻de cérébrale et formes génétiques de maladies des petites artères cérébrales. Pratique Neurologique - FMC, 2012, 3, 289-295.	0.1	0
98	Automatic segmentation of white matter hyperintensities robust to multicentre acquisition and pathological variability. , 2012, , .		0
99	Conventional imaging of lacunar infarcts. , 0, , 129-138.		0