Frederick S Buckner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1339393/publications.pdf

Version: 2024-02-01

57758 79698 6,339 131 44 73 citations h-index g-index papers 140 140 140 6905 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nature, 2016, 537, 229-233.	27.8	325
2	Genomic-scale prioritization of drug targets: the TDR Targets database. Nature Reviews Drug Discovery, 2008, 7, 900-907.	46.4	282
3	Recent Developments in Drug Discovery for Leishmaniasis and Human African Trypanosomiasis. Chemical Reviews, 2014, 114, 11305-11347.	47.7	274
4	Identification of a Metabolically Stable Triazolopyrimidine-Based Dihydroorotate Dehydrogenase Inhibitor with Antimalarial Activity in Mice. Journal of Medicinal Chemistry, 2009, 52, 1864-1872.	6.4	228
5	Heterologous expression of proteins from Plasmodium falciparum: Results from 1000 genes. Molecular and Biochemical Parasitology, 2006, 148, 144-160.	1.1	173
6	Toxoplasma gondii calcium-dependent protein kinase 1 is a target for selective kinase inhibitors. Nature Structural and Molecular Biology, 2010, 17, 602-607.	8.2	172
7	Protein Farnesyltransferase Inhibitors Exhibit Potent Antimalarial Activity. Journal of Medicinal Chemistry, 2005, 48, 3704-3713.	6.4	170
8	Lead Optimization of Aryl and Aralkyl Amine-Based Triazolopyrimidine Inhibitors of <i>Plasmodium falciparum</i> Dihydroorotate Dehydrogenase with Antimalarial Activity in Mice. Journal of Medicinal Chemistry, 2011, 54, 3935-3949.	6.4	156
9	Rational Modification of a Candidate Cancer Drug for Use Against Chagas Disease. Journal of Medicinal Chemistry, 2009, 52, 1639-1647.	6.4	150
10	Protein farnesyl and N-myristoyl transferases: piggy-back medicinal chemistry targets for the development of antitrypanosomatid and antimalarial therapeutics. Molecular and Biochemical Parasitology, 2003, 126, 155-163.	1.1	126
11	Adenosine Analogues as Selective Inhibitors of Glyceraldehyde-3-phosphate Dehydrogenase ofTrypanosomatidaevia Structure-Based Drug Design. Journal of Medicinal Chemistry, 2001, 44, 2080-2093.	6.4	115
12	Second Generation Analogues of the Cancer Drug Clinical Candidate Tipifarnib for Anti-Chagas Disease Drug Discovery. Journal of Medicinal Chemistry, 2010, 53, 3887-3898.	6.4	107
13	Thematic review series: Lipid Posttranslational Modifications. Fighting parasitic disease by blocking protein farnesylation. Journal of Lipid Research, 2006, 47, 233-240.	4.2	104
14	Clinical Features and Outcomes of 105 Hospitalized Patients With COVID-19 in Seattle, Washington. Clinical Infectious Diseases, 2020, 71, 2167-2173.	5.8	95
15	Hypertension Following Erythropoietin Therapy in Anemic Hemodialysis Patients. American Journal of Hypertension, 1990, 3, 947-955.	2.0	94
16	Glycogen Synthase Kinase 3 Is a Potential Drug Target for African Trypanosomiasis Therapy. Antimicrobial Agents and Chemotherapy, 2008, 52, 3710-3717.	3.2	86
17	The effects of protein farnesyltransferase inhibitors on trypanosomatids: inhibition of protein farnesylation and cell growth. Molecular and Biochemical Parasitology, 1998, 94, 87-97.	1.1	85
18	Recent developments in sterol 14-demethylase inhibitors for Chagas disease. International Journal for Parasitology: Drugs and Drug Resistance, 2012, 2, 236-242.	3.4	85

#	Article	IF	CITATIONS
19	The Protein Farnesyltransferase Inhibitor Tipifarnib as a New Lead for the Development of Drugs against Chagas Disease. Journal of Medicinal Chemistry, 2005, 48, 5415-5418.	6.4	83
20	Synergy Testing of FDA-Approved Drugs Identifies Potent Drug Combinations against Trypanosoma cruzi. PLoS Neglected Tropical Diseases, 2014, 8, e2977.	3.0	80
21	Selective Inhibitors of Methionyl-tRNA Synthetase Have Potent Activity against Trypanosoma brucei Infection in Mice. Antimicrobial Agents and Chemotherapy, 2011, 55, 1982-1989.	3.2	75
22	Characterization of <i>Trypanosoma brucei</i> dihydroorotate dehydrogenase as a possible drug target; structural, kinetic and RNAi studies. Molecular Microbiology, 2008, 68, 37-50.	2.5	73
23	Potent Anti-Trypanosoma cruzi Activities of Oxidosqualene Cyclase Inhibitors. Antimicrobial Agents and Chemotherapy, 2001, 45, 1210-1215.	3.2	72
24	Adenosine Analogues as Inhibitors of Trypanosoma brucei Phosphoglycerate Kinase:  Elucidation of a Novel Binding Mode for a 2-Amino-N6-Substituted Adenosine. Journal of Medicinal Chemistry, 2000, 43, 4135-4150.	6.4	70
25	Leishmania major activates IL- $\hat{\Pi}$ ± expression in macrophages through a MyD88-dependent pathway. Microbes and Infection, 2002, 4, 763-771.	1.9	70
26	Detection of Live <i>Trypanosoma cruzi </i> in Tissues of Infected Mice by Using Histochemical Stain for \hat{l}^2 -Galactosidase. Infection and Immunity, 1999, 67, 403-409.	2.2	70
27	Distinct States of Methionyl-tRNA Synthetase Indicate Inhibitor Binding by Conformational Selection. Structure, 2012, 20, 1681-1691.	3.3	69
28	Induction of Resistance to Azole Drugs in Trypanosoma cruzi. Antimicrobial Agents and Chemotherapy, 1998, 42, 3245-3250.	3.2	68
29	Bioisosteric Transformations and Permutations in the Triazolopyrimidine Scaffold To Identify the Minimum Pharmacophore Required for Inhibitory Activity against <i>Plasmodium falciparum</i> Dihydroorotate Dehydrogenase. Journal of Medicinal Chemistry, 2012, 55, 7425-7436.	6.4	67
30	Substituted 2-Phenylimidazopyridines: A New Class of Drug Leads for Human African Trypanosomiasis. Journal of Medicinal Chemistry, 2014, 57, 828-835.	6.4	67
31	Using Fragment Cocktail Crystallography To Assist Inhibitor Design ofTrypanosoma bruceiNucleoside 2-Deoxyribosyltransferaseâ€. Journal of Medicinal Chemistry, 2006, 49, 5939-5946.	6.4	66
32	Second Generation Tetrahydroquinoline-Based Protein Farnesyltransferase Inhibitors as Antimalarials. Journal of Medicinal Chemistry, 2007, 50, 4585-4605.	6.4	66
33	A class of sterol 14-demethylase inhibitors as anti-Trypanosoma cruzi agents. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15149-15153.	7.1	65
34	Identification of Three Classes of Heteroaromatic Compounds with Activity against Intracellular Trypanosoma cruzi by Chemical Library Screening. PLoS Neglected Tropical Diseases, 2009, 3, e384.	3.0	63
35	Advances in Chagas disease drug development: 2009–2010. Current Opinion in Infectious Diseases, 2010, 23, 609-616.	3.1	60
36	Urea-Based Inhibitors of Trypanosoma brucei Methionyl-tRNA Synthetase: Selectivity and in Vivo Characterization. Journal of Medicinal Chemistry, 2012, 55, 6342-6351.	6.4	60

#	Article	IF	CITATIONS
37	Protein Farnesyltransferase from Trypanosoma brucei. Journal of Biological Chemistry, 1998, 273, 26497-26505.	3.4	58
38	Cloning, Heterologous Expression, and Distinct Substrate Specificity of Protein Farnesyltransferase from Trypanosoma brucei. Journal of Biological Chemistry, 2000, 275, 21870-21876.	3.4	55
39	Cloning, heterologous expression, and substrate specificities of protein farnesyltransferases from Trypanosoma cruzi and Leishmania major. Molecular and Biochemical Parasitology, 2002, 122, 181-188.	1.1	53
40	Leishmania inactivation in human pheresis platelets by a psoralen (amotosalen HCl) and long-wavelength ultraviolet irradiation. Transfusion, 2005, 45, 1459-1463.	1.6	52
41	Structure of Leishmania major methionyl-tRNA synthetase in complex with intermediate products methionyladenylate and pyrophosphate. Biochimie, 2011, 93, 570-582.	2.6	50
42	Pharmacological Characterization, Structural Studies, andln VivoActivities of Anti-Chagas Disease Lead Compounds Derived from Tipifarnib. Antimicrobial Agents and Chemotherapy, 2012, 56, 4914-4921.	3.2	50
43	Design and Synthesis of Peptidomimetic Protein Farnesyltransferase Inhibitors as Anti-Trypanosoma brucei Agents. Journal of Medicinal Chemistry, 2004, 47, 432-445.	6.4	49
44	COLORIMETRIC ASSAY FOR SCREENING COMPOUNDS AGAINST LEISHMANIA AMASTIGOTES GROWN IN MACROPHAGES. American Journal of Tropical Medicine and Hygiene, 2005, 72, 600-605.	1.4	49
45	Sterol 14-Demethylase Inhibitors for Trypanosoma cruzi Infections. Advances in Experimental Medicine and Biology, 2008, 625, 61-80.	1.6	47
46	Urea Derivatives of 2-Aryl-benzothiazol-5-amines: A New Class of Potential Drugs for Human African Trypanosomiasis. Journal of Medicinal Chemistry, 2017, 60, 957-971.	6.4	47
47	In vitro and in vivo antimalarial activity of peptidomimetic protein farnesyltransferase inhibitors with improved membrane permeability. Bioorganic and Medicinal Chemistry, 2004, 12, 6517-6526.	3.0	45
48	Heterologous expression of L. major proteins in S. cerevisiae: a test of solubility, purity, and gene recoding. Journal of Structural and Functional Genomics, 2009, 10, 233-247.	1.2	43
49	Buffer Optimization of Thermal Melt Assays of Plasmodium Proteins for Detection of Small-Molecule Ligands. Journal of Biomolecular Screening, 2009, 14, 700-707.	2.6	42
50	Efficacy, Pharmacokinetics, and Metabolism of Tetrahydroquinoline Inhibitors of <i>Plasmodium falciparum</i> Protein Farnesyltransferase. Antimicrobial Agents and Chemotherapy, 2007, 51, 3659-3671.	3.2	40
51	The Double-Length Tyrosyl-tRNA Synthetase from the Eukaryote Leishmania major Forms an Intrinsically Asymmetric Pseudo-Dimer. Journal of Molecular Biology, 2011, 409, 159-176.	4.2	40
52	Trypanosome and Animal Lanosterol Synthases Use Different Catalytic Motifs. Organic Letters, 2001, 3, 1957-1960.	4.6	39
53	Altered sterol profile induced in Leishmania amazonensis by a natural dihydroxymethoxylated chalcone. Journal of Antimicrobial Chemotherapy, 2009, 63, 469-472.	3.0	39
54	Structurally Simple Inhibitors of Lanosterol 14α-Demethylase Are Efficacious In a Rodent Model of Acute Chagas Disease. Journal of Medicinal Chemistry, 2009, 52, 3703-3715.	6.4	38

#	Article	IF	CITATIONS
55	Structural Genomics of Pathogenic Protozoa: an Overview. Methods in Molecular Biology, 2008, 426, 497-513.	0.9	38
56	Structurally Simple Farnesyltransferase Inhibitors Arrest the Growth of Malaria Parasites. Angewandte Chemie - International Edition, 2005, 44, 4903-4906.	13.8	37
57	Crystal Structures of Trypanosomal Histidyl-tRNA Synthetase Illuminate Differences between Eukaryotic and Prokaryotic Homologs. Journal of Molecular Biology, 2010, 397, 481-494.	4.2	37
58	Structures of Trypanosoma brucei Methionyl-tRNA Synthetase with Urea-Based Inhibitors Provide Guidance for Drug Design against Sleeping Sickness. PLoS Neglected Tropical Diseases, 2014, 8, e2775.	3.0	37
59	Optimization of Methionyl tRNA-Synthetase Inhibitors for Treatment of <i>Cryptosporidium</i> Infection. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	37
60	Structurally Simple, Potent, Plasmodium Selective Farnesyltransferase Inhibitors That Arrest the Growth of Malaria Parasites. Journal of Medicinal Chemistry, 2006, 49, 5710-5727.	6.4	36
61	Fragment-Based Cocktail Crystallography by the Medical Structural Genomics of Pathogenic Protozoa Consortium. Current Topics in Medicinal Chemistry, 2009, 9, 1678-1687.	2.1	36
62	Identification of Potent Inhibitors of the Trypanosoma brucei Methionyl-tRNA Synthetase via High-Throughput Orthogonal Screening. Journal of Biomolecular Screening, 2015, 20, 122-130.	2.6	35
63	Crystal structure of glyceraldehyde-3-phosphate dehydrogenase from Plasmodium falciparum at 2.25 Å resolution reveals intriguing extra electron density in the active site. Proteins: Structure, Function and Bioinformatics, 2005, 62, 570-577.	2.6	34
64	Delusional parasitosis: six-year experience with 23 consecutive cases at an academic medical center. International Journal of Infectious Diseases, 2010, 14, e317-e321.	3.3	34
65	Oxidosqualene Cyclase Inhibitors as Antimicrobial Agents. Journal of Medicinal Chemistry, 2003, 46, 4240-4243.	6.4	33
66	Potent, Plasmodium-Selective Farnesyltransferase Inhibitors That Arrest the Growth of Malaria Parasites: Structureâ [^] Activity Relationships of Ethylenediamine-Analogue Scaffolds and Homology Model Validation. Journal of Medicinal Chemistry, 2008, 51, 5176-5197.	6.4	33
67	Structures of Substrate- and Inhibitor-Bound Adenosine Deaminase from a Human Malaria Parasite Show a Dramatic Conformational Change and Shed Light on Drug Selectivity. Journal of Molecular Biology, 2008, 381, 975-988.	4.2	33
68	Protein farnesyl transferase inhibitors for the treatment of malaria and African trypanosomiasis. Current Opinion in Investigational Drugs, 2005, 6, 791-7.	2.3	33
69	TcRho1, a Farnesylated Rho Family Homologue fromTrypanosoma cruzi. Journal of Biological Chemistry, 2001, 276, 29711-29718.	3.4	31
70	Isothiazole dioxides: synthesis and inhibition of Trypanosoma brucei protein farnesyltransferase. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 2217-2220.	2,2	28
71	5-Fluoroimidazo[4,5- <i>b</i>)pyridine Is a Privileged Fragment That Conveys Bioavailability to Potent Trypanosomal Methionyl-tRNA Synthetase Inhibitors. ACS Infectious Diseases, 2016, 2, 399-404.	3.8	28
72	Crystal structures of Plasmodium falciparum cytosolic tryptophanyl-tRNA synthetase and its potential as a target for structure-guided drug design. Molecular and Biochemical Parasitology, 2013, 189, 26-32.	1.1	27

#	Article	IF	CITATIONS
73	1-Benzyl-3-aryl-2-thiohydantoin Derivatives as New Anti- <i>Trypanosoma brucei</i> Agents: SAR and in Vivo Efficacy. ACS Medicinal Chemistry Letters, 2017, 8, 886-891.	2.8	27
74	Colorimetric assay for screening compounds against Leishmania amastigotes grown in macrophages. American Journal of Tropical Medicine and Hygiene, 2005, 72, 600-5.	1.4	27
75	Cloning and heterologous expression of the Trypanosoma brucei lanosterol synthase gene. Molecular and Biochemical Parasitology, 2000, 110, 399-403.	1.1	25
76	C-terminal proteolysis of prenylated proteins in trypanosomatids and RNA interference of enzymes required for the post-translational processing pathway of farnesylated proteins. Molecular and Biochemical Parasitology, 2007, 153, 115-124.	1.1	25
77	Experimental Chemotherapy and Approaches to Drug Discovery for Trypanosoma cruzi Infection. Advances in Parasitology, 2011, 75, 89-119.	3.2	25
78	Structure-guided design of novel Trypanosoma brucei Methionyl-tRNA synthetase inhibitors. European Journal of Medicinal Chemistry, 2016, 124, 1081-1092.	5.5	25
79	Development of Methionyl-tRNA Synthetase Inhibitors as Antibiotics for Gram-Positive Bacterial Infections. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	25
80	Upregulation of sterol C14-demethylase expression in Trypanosoma cruzi treated with sterol biosynthesis inhibitors. Molecular and Biochemical Parasitology, 2005, 144, 68-75.	1.1	24
81	Expression of mammalian cytokines by Trypanosoma cruzi indicates unique signal sequence requirements and processing. Molecular and Biochemical Parasitology, 1995, 75, 25-31.	1.1	22
82	Recent highlights in anti-protozoan drug development and resistance research. International Journal for Parasitology: Drugs and Drug Resistance, 2012, 2, 230-235.	3.4	22
83	Inhibitors of Methionyl-tRNA Synthetase Have Potent Activity against Giardia intestinalis Trophozoites. Antimicrobial Agents and Chemotherapy, 2015, 59, 7128-7131.	3.2	21
84	New Class of Antitrypanosomal Agents Based on Imidazopyridines. ACS Medicinal Chemistry Letters, 2017, 8, 766-770.	2.8	21
85	Brucella melitensis Methionyl-tRNA-Synthetase (MetRS), a Potential Drug Target for Brucellosis. PLoS ONE, 2016, 11, e0160350.	2.5	21
86	Induced Resistance to Methionyl-tRNA Synthetase Inhibitors in Trypanosoma brucei Is Due to Overexpression of the Target. Antimicrobial Agents and Chemotherapy, 2013, 57, 3021-3028.	3.2	19
87	A binding hotspot in <i>Trypanosoma cruzi </i> histidyl-tRNA synthetase revealed by fragment-based crystallographic cocktail screens. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1684-1698.	2.5	19
88	From Cells to Mice to Target: Characterization of NEU-1053 (SB-443342) and Its Analogues for Treatment of Human African Trypanosomiasis. ACS Infectious Diseases, 2017, 3, 225-236.	3.8	19
89	Triazolopyrimidines and Imidazopyridines: Structure–Activity Relationships and in Vivo Efficacy for Trypanosomiasis. ACS Medicinal Chemistry Letters, 2019, 10, 105-110.	2.8	19
90	High-throughput screening of amastigotes of Leishmania donovani clinical isolates against drugs using a colorimetric beta-lactamase assay. Indian Journal of Experimental Biology, 2009, 47, 475-9.	0.0	19

#	Article	IF	Citations
91	Centrally Administered Inhibitors of the Generation and Action of Angiotensin II Do Not Attenuate the Increase in ACTH Secretion Produced by Ether Stress in Rats. Neuroendocrinology, 1986, 42, 97-101.	2.5	18
92	Cloning and analysis of Trypanosoma cruzi lanosterol 14α-demethylase. Molecular and Biochemical Parasitology, 2003, 132, 75-81.	1.1	18
93	Trypanosoma cruzi infection does not impair major histocompatibility complex class I presentation of antigen to cytotoxic T lymphocytes. European Journal of Immunology, 1997, 27, 2541-2548.	2.9	17
94	Isoquinoline-based analogs of the cancer drug clinical candidate tipifarnib as anti-Trypanosoma cruzi agents. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6582-6584.	2.2	17
95	Prediction of protein crystallization outcome using a hybrid method. Journal of Structural Biology, 2010, 171, 64-73.	2.8	17
96	Setting Our Sights on Infectious Diseases. ACS Infectious Diseases, 2020, 6, 3-13.	3.8	17
97	The Crystal Structure and Activity of a Putative Trypanosomal Nucleoside Phosphorylase Reveal It to be a Homodimeric Uridine Phosphorylase. Journal of Molecular Biology, 2010, 396, 1244-1259.	4.2	16
98	Crystal structures of three protozoan homologs of tryptophanyl-tRNA synthetase. Molecular and Biochemical Parasitology, 2011, 177, 20-28.	1.1	16
99	Synthesis and Structureâ^'Activity Relationships of Imidazopyridine/Pyrimidineâ€and Furopyridineâ€Based Antiâ€infective Agents against Trypanosomiases. ChemMedChem, 2021, 16, 966-975.	3.2	16
100	Protein geranylgeranyltransferase-I of Trypanosoma cruzi. Molecular and Biochemical Parasitology, 2008, 157, 32-43.	1.1	14
101	Crystal structure of the aspartyl-tRNA synthetase from Entamoeba histolytica. Molecular and Biochemical Parasitology, 2010, 169, 95-100.	1.1	14
102	Optimization of a binding fragment targeting the "enlarged methionine pocket―leads to potent Trypanosoma brucei methionyl-tRNA synthetase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2702-2707.	2.2	14
103	Structure of ribose 5-phosphate isomerase fromPlasmodium falciparum. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 427-431.	0.7	13
104	Leishmania donovani tyrosyl-tRNA synthetase structure in complex with a tyrosyl adenylate analog and comparisons with human and protozoan counterparts. Biochimie, 2017, 138, 124-136.	2.6	13
105	Trypanosoma cruzi:Expression of Interleukin-2 Utilizing both Supercoiled Plasmids and Linear DNAs. Experimental Parasitology, 1996, 83, 159-163.	1.2	12
106	The structure of tryptophanyl-tRNA synthetase from Giardia lamblia reveals divergence from eukaryotic homologs. Journal of Structural Biology, 2010, 171, 238-243.	2.8	12
107	Bioactivity of Farnesyltransferase Inhibitors Against Entamoeba histolytica and Schistosoma mansoni. Frontiers in Cellular and Infection Microbiology, 2019, 9, 180.	3.9	12
108	Structure-guided discovery of selective methionyl-tRNA synthetase inhibitors with potent activity against <i>Trypanosoma brucei</i> . RSC Medicinal Chemistry, 2020, 11, 885-895.	3.9	12

#	Article	IF	CITATIONS
109	Methionyl-tRNA synthetase inhibitor has potent <i>in vivo</i> activity in a novel <i>Giardia lamblia</i> luciferase murine infection model. Journal of Antimicrobial Chemotherapy, 2020, 75, 1218-1227.	3.0	12
110	Spontaneous Selection of <i>Cryptosporidium</i> Drug Resistance in a Calf Model of Infection. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	12
111	Dialkylimidazole inhibitors of Trypanosoma cruzi sterol 14α-demethylase as anti-Chagas disease agents. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6492-6499.	2.2	11
112	Trypanosoma cruzi:Use of Herpes Simplex Virus–Thymidine Kinase as a Negative Selectable Marker. Experimental Parasitology, 1997, 86, 171-180.	1.2	10
113	Discovery of N-(2-aminoethyl)-N-benzyloxyphenyl benzamides: New potent Trypanosoma brucei inhibitors. Bioorganic and Medicinal Chemistry, 2017, 25, 1571-1584.	3.0	10
114	The crystal structure of the drug target <i>Mycobacterium tuberculosis</i> methionyl-tRNA synthetase in complex with a catalytic intermediate. Acta Crystallographica Section F, Structural Biology Communications, 2018, 74, 245-254.	0.8	10
115	Trypanosoma brucei prenylated-protein carboxyl methyltransferase prefers farnesylated substrates. Biochemical Journal, 2002, 367, 809-816.	3.7	9
116	Structure of the conserved hypothetical protein MAL13P1.257 fromPlasmodium falciparum. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 180-185.	0.7	9
117	Screening a fragment cocktail library using ultrafiltration. Analytical and Bioanalytical Chemistry, 2011, 401, 1585-1591.	3.7	9
118	Structure of the prolyl-tRNA synthetase from the eukaryotic pathogen <i>Giardia lamblia</i> Crystallographica Section D: Biological Crystallography, 2012, 68, 1194-1200.	2.5	9
119	Differential drug binding by the highly conserved Plasmodium falciparum thymidylate synthase. Molecular and Biochemical Parasitology, 2005, 143, 121-124.	1.1	7
120	Cloning and functional characterization of a Trypanosoma brucei lanosterol 14α-demethylase gene. Molecular and Biochemical Parasitology, 2001, 117, 115-117.	1.1	6
121	Phenotypic Drug Discovery for Human African Trypanosomiasis: A Powerful Approach. Tropical Medicine and Infectious Disease, 2020, 5, 23.	2.3	6
122	The structure of Plasmodium vivax phosphatidy lethan olamine-binding protein suggests a functional motif containing a left-handed helix. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 178-182.	0.7	5
123	Structure of a < i>Trypanosoma brucei < i \hat{I} $\pm \hat{I}$ \hat{I} -hydrolase fold protein with unknown function. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 474-478.	0.7	5
124	Confirmation of Chagas' cardiomyopathy following heart transplantation. Heart and Vessels, 2006, 21, 325-327.	1.2	4
125	An Essential Farnesylated Kinesin in Trypanosoma brucei. PLoS ONE, 2011, 6, e26508.	2.5	4
126	A new chemotype with promise against Trypanosoma cruzi. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126778.	2.2	1

#	Article	IF	CITATIONS
127	Early Stages of Drug Discovery in an Academic Institution and Involvement of Pharma for Advancing Promising Leads. ACS Infectious Diseases, 2021, 7, 1874-1876.	3.8	1
128	Case Report: Miltefosine Failure and Spontaneous Resolution of Cutaneous Leishmaniasis braziliensis. American Journal of Tropical Medicine and Hygiene, 2021, 105, 142-143.	1.4	1
129	A 71-year-old man with recurrent pulmonary mycobacterial avium complex infections and lymphopenia. Allergy and Asthma Proceedings, 2020, 41, 66-69.	2.2	1
130	Immunological Aspects of Cardiac Disease. , 0, , 199-230.		0
131	The Tryp and the Pendulum. EBioMedicine, 2021, 64, 103188.	6.1	0