
Mark A Mcpeek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1338607/publications.pdf Version: 2024-02-01

MADE A MODEEK

#	Article	IF	CITATIONS
1	Environmental Conditions during Development Affect Sexual Selection through Trait-Fitness Relationships. American Naturalist, 2022, 199, 34-50.	2.1	3
2	Nectar dynamics and the coexistence of two plants that share a pollinator. Oikos, 2022, 2022, .	2.7	1
3	Ecoâ€evolutionary feedbacks among pollinators, herbivores, and their plant resources. Evolution; International Journal of Organic Evolution, 2022, 76, 1287-1300.	2.3	4
4	When Ecology Fails: How Reproductive Interactions Promote Species Coexistence. Trends in Ecology and Evolution, 2021, 36, 610-622.	8.7	22
5	Integrating fundamental processes to understand ecoâ€evolutionary community dynamics and patterns. Functional Ecology, 2021, 35, 2138-2155.	3.6	11
6	The Evolution of Resource Provisioning in Pollination Mutualisms. American Naturalist, 2021, 198, 441-459.	2.1	4
7	Mechanisms influencing the coexistence of multiple consumers and multiple resources: resource and apparent competition. Ecological Monographs, 2019, 89, e01328.	5.4	23
8	Disentangling ecologically equivalent from neutral species: The mechanisms of population regulation matter. Journal of Animal Ecology, 2019, 88, 1755-1765.	2.8	12
9	Limiting Similarity? The Ecological Dynamics of Natural Selection among Resources and Consumers Caused by Both Apparent and Resource Competition. American Naturalist, 2019, 193, E92-E115.	2.1	19
10	Female mate preferences on highâ€dimensional shape variation for male species recognition traits. Journal of Evolutionary Biology, 2018, 31, 1239-1250.	1.7	4
11	The Ecological Dynamics of Natural Selection: Traits and the Coevolution of Community Structure. American Naturalist, 2017, 189, E91-E117.	2.1	60
12	Mechanical and tactile incompatibilities cause reproductive isolation between two young damselfly species. Evolution; International Journal of Organic Evolution, 2017, 71, 2410-2427.	2.3	36
13	Multi-locus phylogeny and divergence time estimates of Enallagma damselflies (Odonata:) Tj ETQq1 1 0.78431	4 rgBT /Ον 2.7	$\operatorname{erlock}_{23}$ 10 Tf 5
14	How monkeys see a forest: genetic variation and population genetic structure of two forest primates. Conservation Genetics, 2015, 16, 559-569.	1.5	9
15	Predation risk shapes thermal physiology of a predaceous damselfly. Oecologia, 2014, 176, 653-660.	2.0	50
16	Keystone and Intraguild Predation, Intraspecific Density Dependence, and a Guild of Coexisting Consumers. American Naturalist, 2014, 183, E1-E16.	2.1	17
17	Functional Annotation and Comparative Analysis of a Zygopteran Transcriptome. G3: Genes, Genomes, Genetics, 2013, 3, 763-770.	1.8	5
18	Niche versus neutrality in structuring the beta diversity of damselfly assemblages. Freshwater Biology, 2013, 58, 758-768.	2.4	31

#	Article	IF	CITATIONS
19	VI.16. Evolution of Communities. , 2013, , 599-604.		0
20	Intraspecific density dependence and a guild of consumers coexisting on one resource. Ecology, 2012, 93, 2728-2735.	3.2	39
21	Signature of ecological partitioning in the maintenance of damselfly diversity. Journal of Animal Ecology, 2011, 80, 1163-1173.	2.8	29
22	SPECIES RECOGNITION AND PATTERNS OF POPULATION VARIATION IN THE REPRODUCTIVE STRUCTURES OF A DAMSELFLY GENUS. Evolution; International Journal of Organic Evolution, 2011, 65, 419-428.	2.3	45
23	Fish predation selects for reduced foraging activity. Behavioral Ecology and Sociobiology, 2011, 65, 241-247.	1.4	47
24	Endangered species in small habitat patches can possess high genetic diversity: the case of the Tana River red colobus and mangabey. Conservation Genetics, 2010, 11, 1725-1735.	1.5	18
25	EARLY BURSTS OF BODY SIZE AND SHAPE EVOLUTION ARE RARE IN COMPARATIVE DATA. Evolution; International Journal of Organic Evolution, 2010, 64, no-no.	2.3	672
26	Survival selection imposed by predation on a physiological trait underlying escape speed. Functional Ecology, 2010, 24, 1306-1312.	3.6	33
27	On the evidence for species coexistence: a critique of the coexistence program. Ecology, 2010, 91, 3153-3164.	3.2	197
28	Experimental evidence for neutral community dynamics governing an insect assemblage. Ecology, 2010, 91, 847-857.	3.2	93
29	THE CORRELATED EVOLUTION OF THREE-DIMENSIONAL REPRODUCTIVE STRUCTURES BETWEEN MALE AND FEMALE DAMSELFLIES. Evolution; International Journal of Organic Evolution, 2009, 63, 73-83.	2.3	94
30	MODELING THREE-DIMENSIONAL MORPHOLOGICAL STRUCTURES USING SPHERICAL HARMONICS. Evolution; International Journal of Organic Evolution, 2009, 63, 1003-1016.	2.3	195
31	LIFE-HISTORY EVOLUTION WHEN LESTES DAMSELFLIES INVADED VERNAL PONDS. Evolution; International Journal of Organic Evolution, 2008, 62, 485-493.	2.3	23
32	Life history plasticity to combined time and biotic constraints in <i>Lestes</i> damselflies from vernal and temporary ponds. Oikos, 2008, 117, 908-916.	2.7	26
33	Stronger compensatory growth in a permanentâ€pond <i>Lestes</i> damselfly relative to temporaryâ€pond <i>Lestes</i> . Oikos, 2008, 117, 245-254.	2.7	28
34	The Tempo and Mode of Threeâ€Dimensional Morphological Evolution in Male Reproductive Structures. American Naturalist, 2008, 171, E158-E178.	2.1	140
35	The Ecological Dynamics of Clade Diversification and Community Assembly. American Naturalist, 2008, 172, E270-E284.	2.1	277
36	Winter compensatory growth under field conditions partly offsets low energy reserves before winter in a damselfly. Oikos, 2007, 116, 1975-1982.	2.7	32

#	Article	IF	CITATIONS
37	Clade Age and Not Diversification Rate Explains Species Richness among Animal Taxa. American Naturalist, 2007, 169, E97-E106.	2.1	190
38	THE MACROEVOLUTIONARY CONSEQUENCES OF ECOLOGICAL DIFFERENCES AMONG SPECIES. Palaeontology, 2007, 50, 111-129.	2.2	45
39	PHYSIOLOGICAL COSTS OF COMPENSATORY GROWTH IN A DAMSELFLY. Ecology, 2006, 87, 1566-1574.	3.2	161
40	COEXISTENCE OF THE NICHE AND NEUTRAL PERSPECTIVES IN COMMUNITY ECOLOGY. Ecology, 2006, 87, 1399-1410.	3.2	581
41	THE EVOLUTION OF FEMALE MATING PREFERENCES: DIFFERENTIATION FROM SPECIES WITH PROMISCUOUS MALES CAN PROMOTE SPECIATION. Evolution; International Journal of Organic Evolution, 2006, 60, 1967-1980.	2.3	82
42	What Hypotheses Are You Willing to Entertain?. American Naturalist, 2006, 168, S1-S3.	2.1	5
43	Growth and Predation Risk in Green Frog Tadpoles (Rana clamitans): A Quantitative Genetic Analysis. Copeia, 2006, 2006, 478-488.	1.3	18
44	A Tale of Two Diversifications: Reciprocal Habitat Shifts to Fill Ecological Space along the Pond Permanence Gradient. American Naturalist, 2006, 168, S50-S72.	2.1	85
45	The evolution of female mating preferences: differentiation from species with promiscuous males can promote speciation. Evolution; International Journal of Organic Evolution, 2006, 60, 1967-80.	2.3	21
46	Alternative growth and energy storage responses to mortality threats in damselflies. Ecology Letters, 2005, 8, 1307-1316.	6.4	96
47	PARALLEL EVOLUTION IN ECOLOGICAL AND REPRODUCTIVE TRAITS TO PRODUCE CRYPTIC DAMSELFLY SPECIES ACROSS THE HOLARCTIC. Evolution; International Journal of Organic Evolution, 2005, 59, 1976-1988.	2.3	42
48	The community context of species' borders: ecological and evolutionary perspectives. Oikos, 2005, 108, 28-46.	2.7	323
49	Simultaneous Quaternary Radiations of Three Damselfly Clades across the Holarctic. American Naturalist, 2005, 165, E78-E107.	2.1	100
50	The dynamics of evolutionary stasis. Paleobiology, 2005, 31, 133-145.	2.0	308
51	The Growth/Predation Risk Tradeâ€Off: So What Is the Mechanism?. American Naturalist, 2004, 163, E88-E111.	2.1	173
52	ANTIPREDATOR BEHAVIOR AND PHYSIOLOGY DETERMINE LESTES SPECIES TURNOVER ALONG THE POND-PERMANENCE GRADIENT. Ecology, 2003, 84, 3327-3338.	3.2	80
53	PREDATORS AND LIFE HISTORIES SHAPE LESTES DAMSELFLY ASSEMBLAGES ALONG A FRESHWATER HABITAT GRADIENT. Ecology, 2003, 84, 1576-1587.	3.2	119
54	Phylogenies and Community Ecology. Annual Review of Ecology, Evolution, and Systematics, 2002, 33, 475-505.	6.7	3,473

#	Article	IF	CITATIONS
55	PHYSIOLOGICAL AND BEHAVIORAL RESPONSES TO PREDATORS SHAPE THE GROWTH/PREDATION RISK TRADE-OFF IN DAMSELFLIES. Ecology, 2001, 82, 1535-1545.	3.2	177
56	A general model of site-dependent population regulation: population-level regulation without individual-level interactions. Oikos, 2001, 94, 417-424.	2.7	67
57	PREDISPOSED TO ADAPT? CLADE-LEVEL DIFFERENCES IN CHARACTERS AFFECTING SWIMMING PERFORMANCE IN DAMSELFLIES. Evolution; International Journal of Organic Evolution, 2000, 54, 2072-2080.	2.3	27
58	A Phylogenetic Perspective on Habitat Shifts and Diversity in the North American Enallagma Damselflies. Systematic Biology, 2000, 49, 697-712.	5.6	70
59	PREDISPOSED TO ADAPT? CLADE-LEVEL DIFFERENCES IN CHARACTERS AFFECTING SWIMMING PERFORMANCE IN DAMSELFLIES. Evolution; International Journal of Organic Evolution, 2000, 54, 2072.	2.3	1
60	BUILDING A REGIONAL SPECIES POOL: DIVERSIFICATION OF THEENALLAGMADAMSELFLIES IN EASTERN NORTH AMERICA. Ecology, 2000, 81, 904-920.	3.2	123
61	Building a Regional Species Pool: Diversification of the Enallagma Damselflies in Eastern North America. Ecology, 2000, 81, 904.	3.2	35
62	Biochemical Evolution Associated with Antipredator Adaptation in Damselflies. Evolution; International Journal of Organic Evolution, 1999, 53, 1835.	2.3	12
63	BIOCHEMICAL EVOLUTION ASSOCIATED WITH ANTIPREDATOR ADAPTATION IN DAMSELFLIES. Evolution; International Journal of Organic Evolution, 1999, 53, 1835-1845.	2.3	31
64	THE CONSEQUENCES OF CHANGING THE TOP PREDATOR IN A FOOD WEB: A COMPARATIVE EXPERIMENTAL APPROACH. Ecological Monographs, 1998, 68, 1-23.	5.4	143
65	The Consquences of Changing the Top Predator in a Food Web: A Comparative Experimental Approach. Ecological Monographs, 1998, 68, 1.	5.4	149
66	LIFE HISTORIES AND THE STRENGTHS OF SPECIES INTERACTIONS: COMBINING MORTALITY, GROWTH, AND FECUNDITY EFFECTS. Ecology, 1998, 79, 867-879.	3.2	186
67	Measuring Phenotypic Selection on an Adaptation: Lamellae of Damselflies Experiencing Dragonfly Predation. Evolution; International Journal of Organic Evolution, 1997, 51, 459.	2.3	30
68	MEASURING PHENOTYPIC SELECTION ON AN ADAPTATION: LAMELLAE OF DAMSELFLIES EXPERIENCING DRAGONFLY PREDATION. Evolution; International Journal of Organic Evolution, 1997, 51, 459-466.	2.3	61
69	Linking Local Species Interactions to Rates of Speciation in Communities. Ecology, 1996, 77, 1355-1366.	3.2	58
70	Trade-Offs, Food Web Structure, and the Coexistence of Habitat Specialists and Generalists. American Naturalist, 1996, 148, S124-S138.	2.1	121
71	Adaptation to Predators in a New Community: Swimming Performance and Predator Avoidance in Damselflies. Ecology, 1996, 77, 617-629.	3.2	124
72	MORPHOLOGICAL EVOLUTION MEDIATED BY BEHAVIOR IN THE DAMSELFLIES OF TWO COMMUNITIES. Evolution; International Journal of Organic Evolution, 1995, 49, 749-769.	2.3	81

#	Article	IF	CITATIONS
73	Morphological Evolution Mediated by Behavior in the Damselflies of Two Communities. Evolution; International Journal of Organic Evolution, 1995, 49, 749.	2.3	39
74	Testing Hypotheses About Evolutionary Change on Single Branches of a Phylogeny Using Evolutionary Contrasts. American Naturalist, 1995, 145, 686-703.	2.1	104
75	Direct and Indirect Effects of Predators on Two Anuran Species along an Environmental Gradient. Ecology, 1994, 75, 1368-1382.	3.2	265
76	The Evolution of Dispersal in Spatially and Temporally Varying Environments. American Naturalist, 1992, 140, 1010-1027.	2.1	696
77	Behavioral Differences between Enallagma Species (Odonata) Influencing Differential Vulnerability to Predators. Ecology, 1990, 71, 1714-1726.	3.2	249
78	Determination of Species Composition in the Enallagma Damselfly Assemblages of Permanent Lakes. Ecology, 1990, 71, 83-98.	3.2	252
79	Predation Risk and The Foraging Behavior of Competing Stream Insects. Ecology, 1989, 70, 1811-1825.	3.2	244
80	Differential Dispersal Tendencies among Enallagma damselflies (Odonata) Inhabiting Different Habitats. Oikos, 1989, 56, 187.	2.7	78
81	The effects of density and relative size on the aggressive behaviour, movement and feeding of damselfly larvae (Odonata: Coenagrionidae). Animal Behaviour, 1987, 35, 1051-1061.	1.9	89
82	Character displacement when natural selection pushes in only one direction. Ecological Monographs, 0, , .	5.4	2