
Pavel MikuÅ;ka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1337965/publications.pdf Version: 2024-02-01

ΔΑνει Μικιιά:κα

#	Article	IF	CITATIONS
1	Six-week inhalation of lead oxide nanoparticles in mice affects antioxidant defense, immune response, kidneys, intestine and bones. Environmental Science: Nano, 2022, 9, 751-766.	4.3	4
2	Copper Oxide Nanoparticles Stimulate the Immune Response and Decrease Antioxidant Defense in Mice After Six-Week Inhalation. Frontiers in Immunology, 2022, 13, 874253.	4.8	23
3	Influence of boiler output and type on gaseous and particulate emissions from the combustion of coal for residential heating. Chemosphere, 2021, 278, 130402.	8.2	17
4	Nontuberculous Mycobacteria Prevalence in Aerosol and Spiders' Webs in Karst Caves: Low Risk for Speleotherapy. Microorganisms, 2021, 9, 2573.	3.6	4
5	The effects of nano-sized PbO on biomarkers of membrane disruption and DNA damage in a sub-chronic inhalation study on mice. Nanotoxicology, 2020, 14, 214-231.	3.0	14
6	Mass concentrations and lung cancer risk assessment of PAHs bound to PM1 aerosol in six industrial, urban and rural areas in the Czech Republic, Central Europe. Atmospheric Pollution Research, 2020, 11, 401-408.	3.8	20
7	Six-week inhalation of CdO nanoparticles in mice: The effects on immune response, oxidative stress, antioxidative defense, fibrotic response, and bones. Food and Chemical Toxicology, 2020, 136, 110954.	3.6	11
8	Determination of dicarboxylic acids in atmospheric aerosols using continuous aerosol sampler with on-line connected ion chromatography system. Atmospheric Environment, 2020, 222, 117178.	4.1	11
9	A Clearance Period after Soluble Lead Nanoparticle Inhalation Did Not Ameliorate the Negative Effects on Target Tissues Due to Decreased Immune Response. International Journal of Molecular Sciences, 2020, 21, 8738.	4.1	8
10	Simultaneous Determination of Gaseous Ammonia and Particulate Ammonium in Ambient Air Using a Cylindrical Wet Effluent Diffusion Denuder and a Continuous Aerosol Sampler. Analytical Chemistry, 2020, 92, 15827-15836.	6.5	3
11	Characterization and Source Identification of Elements and Water-Soluble Ions in Submicrometre Aerosols in Brno and Ålapanice (Czech Republic). Atmosphere, 2020, 11, 688.	2.3	10
12	Gene Expression and Epigenetic Changes in Mice Following Inhalation of Copper(II) Oxide Nanoparticles. Nanomaterials, 2020, 10, 550.	4.1	24
13	Variability in the Clearance of Lead Oxide Nanoparticles Is Associated with Alteration of Specific Membrane Transporters. ACS Nano, 2020, 14, 3096-3120.	14.6	13
14	Subchronic continuous inhalation exposure to zinc oxide nanoparticles induces pulmonary cell response in mice. Journal of Trace Elements in Medicine and Biology, 2020, 61, 126511.	3.0	14
15	Content of metals in emissions from gasoline, diesel, and alternative mixed biofuels. Environmental Science and Pollution Research, 2019, 26, 29012-29019.	5.3	28
16	A murine model of the effects of inhaled CuO nanoparticles on cells of innate and adaptive immunity – a kinetic study of a continuous three-month exposure. Nanotoxicology, 2019, 13, 952-963.	3.0	12
17	Comparison of emissions of gaseous and particulate pollutants from the combustion of biomass and coal in modern and old-type boilers used for residential heating in the Czech Republic, Central Europe. Chemosphere, 2019, 229, 51-59.	8.2	57
18	The influence of local emissions and regional air pollution transport on a European air pollution hot spot. Environmental Science and Pollution Research, 2019, 26, 1675-1692.	5.3	36

Pavel MikuÅika

#	Article	IF	CITATIONS
19	Inhalation of ZnO Nanoparticles: Splice Junction Expression and Alternative Splicing in Mice. Toxicological Sciences, 2019, 168, 190-200.	3.1	24
20	Detection and identification of engineered nanoparticles in exhaled breath condensate, blood serum, and urine of occupationally exposed subjects. Monatshefte Für Chemie, 2019, 150, 511-523.	1.8	6
21	Nonparametric algorithm for identification of outliers in environmental data. Journal of Chemometrics, 2018, 32, e2997.	1.3	10
22	Aerosol sampler for analysis of fine and ultrafine aerosols. Analytica Chimica Acta, 2018, 1020, 123-133.	5.4	11
23	Source apportionment of aerosol particles at a European air pollution hot spot using particle number size distributions and chemical composition. Environmental Pollution, 2018, 234, 145-154.	7.5	50
24	Determination of short-term changes in levoglucosan and dehydroabietic acid in aerosols with Condensation Growth Unit – Aerosol Counterflow Two-Jets Unit – LC-MS. Chemosphere, 2018, 210, 279-286.	8.2	4
25	Blends of butanol and hydrotreated vegetable oils as drop-in replacement for diesel engines: Effects on combustion and emissions. Fuel, 2017, 197, 407-421.	6.4	48
26	VUV photoionization aerosol mass spectrometric study on the iodine oxide particles formed from O ₃ -initiated photooxidation of diiodomethane (CH ₂ 1 ₂). RSC Advances, 2017, 7, 56779-56787.	3.6	5
27	Inhaled Cadmium Oxide Nanoparticles: Their in Vivo Fate and Effect on Target Organs. International Journal of Molecular Sciences, 2016, 17, 874.	4.1	35
28	Determination of the bioaccessible fraction of metals in urban aerosol using simulated lung fluids. Atmospheric Environment, 2016, 140, 469-475.	4.1	28
29	Wet effluent diffusion denuder: The tool for determination of monoterpenes in forest. Talanta, 2016, 153, 260-267.	5.5	4
30	Monosaccharide anhydrides, monocarboxylic acids and OC/EC in PM1 aerosols in urban areas in the Czech Republic. Atmospheric Pollution Research, 2015, 6, 917-927.	3.8	14
31	A portable device for fast analysis of explosives in the environment. Journal of Chromatography A, 2015, 1388, 167-173.	3.7	13
32	Antimicrobial properties and chemical composition of liquid and gaseous phases of essential oils. Chemical Papers, 2015, 69, .	2.2	7
33	Photo-induced flow-injection determination of nitrate in water. International Journal of Environmental Analytical Chemistry, 2014, 94, 1038-1049.	3.3	9
34	Seasonal Variability of Mercury Contents in Street Dust in Brno, Czech Republic. Bulletin of Environmental Contamination and Toxicology, 2014, 93, 503-508.	2.7	16
35	Detection of peroxyacetyl nitrate in air using chemiluminescence aerosol detector. Chemical Papers, 2014, 68, .	2.2	Ο
36	Polycyclic aromatic hydrocarbons and hopanes in PM1 aerosols in urban areas. Atmospheric Environment, 2013, 67, 27-37.	4.1	82

Pavel ΜικυÅικα

#	Article	IF	CITATIONS
37	Statistical analysis of chemical composition of PM1 aerosols. , 2013, , .		ο
38	Analysis of water-soluble fraction of metals in atmospheric aerosols using aerosol counterflow two-jets unit and chemiluminescent detection. International Journal of Environmental Analytical Chemistry, 2012, 92, 432-449.	3.3	5
39	Annular diffusion denuder for simultaneous removal of gaseous organic compounds and air oxidants during sampling of carbonaceous aerosols. Analytica Chimica Acta, 2012, 714, 68-75.	5.4	18
40	Application of wet effluent diffusion denuder for measurement of uptake coefficient of gaseous pollutants. Talanta, 2011, 84, 519-523.	5.5	1
41	Ozone flux over a Norway spruce forest and correlation with net ecosystem production. Environmental Pollution, 2011, 159, 1024-1034.	7.5	34
42	Dynamics of Atmospheric Aerosol Number Size Distributions in the Eastern Mediterranean During the "SUB-AERO―Project. Water, Air, and Soil Pollution, 2011, 214, 133-146.	2.4	7
43	Seasonal variations of monosaccharide anhydrides in PM1 and PM2.5 aerosol in urban areas. Atmospheric Environment, 2010, 44, 5148-5155.	4.1	46
44	Influence of physical properties and chemical composition of sample on formation of aerosol particles generated by nanosecond laser ablation at 213 nm. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2010, 65, 51-60.	2.9	17
45	Tungsten carbide precursors as an example for influence of a binder on the particle formation in the nanosecond laser ablation of powdered materials. Talanta, 2010, 80, 1862-1867.	5.5	5
46	Estimation of NH ₃ emissions from a naturally ventilated livestock farm using local-scale atmospheric dispersion modelling. Biogeosciences, 2009, 6, 2847-2860.	3.3	19
47	Shipboard Measurements of Nitrogen Dioxide, Nitrous Acid, Nitric Acid and Ozone in the Eastern Mediterranean Sea. Water, Air and Soil Pollution, 2008, 8, 117-125.	0.8	11
48	Study of aerosols generated by 213 nm laser ablation of cobalt-cemented hard metals. Journal of Analytical Atomic Spectrometry, 2008, 23, 1341.	3.0	17
49	Determination of nitrous acid in air using wet effluent diffusion denuder–FIA technique. Talanta, 2008, 77, 635-641.	5.5	12
50	Flow-injection chemiluminescence determination of formaldehyde in water. Talanta, 2007, 71, 900-905.	5.5	31
51	Comparative analysis of organic and elemental carbon concentrations in carbonaceous aerosols in three European cities. Atmospheric Environment, 2007, 41, 5972-5983.	4.1	128
52	Continuous chemiluminescence determination of formaldehyde in air based on Trautz–Schorigin reaction. Analytica Chimica Acta, 2006, 562, 236-244.	5.4	25
53	Dynamics of fine particles and photo-oxidants in the Eastern Mediterranean (SUB-AERO). Atmospheric Environment, 2006, 40, 6214-6228.	4.1	44
54	Organic and elemental carbon concentrations in carbonaceous aerosols during summer and winter sampling campaigns in Barcelona, Spain. Atmospheric Environment, 2006, 40, 2180-2193.	4.1	102

Pavel ΜικυÅικα

#	Article	IF	CITATIONS
55	Aerosol Counterflow Two-Jets Unit for Continuous Measurement of the Soluble Fraction of Atmospheric Aerosols. Analytical Chemistry, 2005, 77, 5534-5541.	6.5	7
56	A continuous-flow instrument for the determination of linear polyacrylamide stability. Electrophoresis, 2004, 25, 2139-2143.	2.4	3
57	Continuous fluorescence determination of formaldehyde in air. Analytica Chimica Acta, 2004, 518, 51-57.	5.4	40
58	Generator of Fine Polydisperse Aerosol. Collection of Czechoslovak Chemical Communications, 2004, 69, 1453-1463.	1.0	11
59	Simultaneous determination of nitrite and nitrate in water by chemiluminescent flow-injection analysis. Analytica Chimica Acta, 2003, 495, 225-232.	5.4	136
60	Chemiluminescent flow-injection analysis of nitrates in water using on-line ultraviolet photolysis. Analytica Chimica Acta, 2002, 474, 99-105.	5.4	26
61	Effect of complexones and tensides on selectivity of nitrogen dioxide determination in air with a chemiluminescence aerosol detector. Analytica Chimica Acta, 2000, 410, 159-165.	5.4	18
62	Application of gallic acid and xanthene dyes for determination of ozone in air with a chemiluminescence aerosol detector. Analytica Chimica Acta, 1998, 374, 297-302.	5.4	17
63	Organic Solvents with Wet Effluent Diffusion Denuder for Preconcentration of 1,4-Dichlorobenzene from Air. Analytical Chemistry, 1995, 67, 2763-2766.	6.5	8
64	Determination of nitrogen dioxide with a chemiluminescent aerosol detector. Analytical Chemistry, 1992, 64, 2187-2191.	6.5	18
65	Optimisation of preconcentration for determination of dicarboxylic acids using ion chromatography. International Journal of Environmental Analytical Chemistry, 0, , 1-12.	3.3	0