Lance R Peterson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/133783/publications.pdf Version: 2024-02-01

LANCE P DETERSON

#	Article	IF	CITATIONS
1	Reduced Clostridioides difficile infection in a pragmatic stepped-wedge initiative using admission surveillance to detect colonization. PLoS ONE, 2020, 15, e0230475.	2.5	4
2	Validation of Active Surveillance Testing for Clostridium difficile Colonization Using the cobas Cdiff Test. Journal of Clinical Microbiology, 2018, 56, .	3.9	2
3	Evaluation of the cobas Cdiff Test for Detection of Toxigenic Clostridium difficile in Stool Samples. Journal of Clinical Microbiology, 2017, 55, 3426-3436.	3.9	12
4	The Impact of Recurrent Clostridium difficile Infection on Patients' Prevention Behaviors. Infection Control and Hospital Epidemiology, 2017, 38, 1351-1357.	1.8	6
5	Performance of the cobas MRSA/SA Test for Simultaneous Detection of Methicillin-Susceptible and Methicillin-Resistant Staphylococcus aureus From Nasal Swabs. American Journal of Clinical Pathology, 2017, 148, 119-127.	0.7	9
6	Prospective observational study on central line–associated bloodstream infections and central venous catheter occlusions using a negative displacement connector with an alcohol disinfecting cap. American Journal of Infection Control, 2017, 45, 115-120.	2.3	9
7	Methicillin-Resistant Staphylococcus aureus Control in the 21st Century: Laboratory Involvement Affecting Disease Impact and Economic Benefit from Large Population Studies. Journal of Clinical Microbiology, 2016, 54, 2647-2654.	3.9	30
8	Reduction of methicillin-resistant Staphylococcus aureus infection in long-term care is possible while maintaining patient socialization: A prospective randomized clinical trial. American Journal of Infection Control, 2016, 44, 1622-1627.	2.3	19
9	Host response to Clostridium difficile infection: Diagnostics and detection. Journal of Global Antimicrobial Resistance, 2016, 7, 93-101.	2.2	19
10	Nonimpact of Decolonization as an Adjunctive Measure to Contact Precautions for the Control of Methicillin-Resistant Staphylococcus aureus Transmission in Acute Care. Antimicrobial Agents and Chemotherapy, 2016, 60, 99-104.	3.2	6
11	Joint Transcriptional Control of Virulence and Resistance to Antibiotic and Environmental Stress in Acinetobacter baumannii. MBio, 2015, 6, e01660-15.	4.1	132
12	Performance of 3 real-time PCR assays for direct detection of Staphylococcus aureus and MRSA from clinical samples. Diagnostic Microbiology and Infectious Disease, 2015, 83, 211-215.	1.8	9
13	Evaluation of Multiple Real-Time PCR Tests on Nasal Samples in a Large MRSA Surveillance Program. American Journal of Clinical Pathology, 2015, 143, 652-658.	0.7	21
14	Nonutility of Catheter Tip Cultures for the Diagnosis of Central Line-Associated Bloodstream Infection. Clinical Infectious Diseases, 2015, 60, 492-493.	5.8	16
15	637Control of Methicillin-Resistant Staphylococcus aureus (MRSA) in Long Term Care is Possible While Maintaining Patient Socialization without Isolation. Open Forum Infectious Diseases, 2014, 1, S31-S31.	0.9	Ο
16	1035New Urine Reporting Criteria to Accurately Report Nosocomial Clinical Urinary Tract Infection. Open Forum Infectious Diseases, 2014, 1, S303-S303.	0.9	0
17	Active Surveillance and Decolonization Without Isolation Is Effective in Preventing Methicillin-Resistant Staphylococcus aureus Transmission in the Psychiatry Units. Open Forum Infectious Diseases, 2014, 1, ofu067.	0.9	2
18	Sensitivity of Surveillance Testing for Multidrug-Resistant Gram-Negative Bacteria in the Intensive Care Unit. Journal of Clinical Microbiology, 2014, 52, 4047-4048.	3.9	4

LANCE R PETERSON

#	Article	IF	CITATIONS
19	Molecular identification of staphylococcal bacteraemia. Lancet Infectious Diseases, The, 2014, 14, 94-96.	9.1	4
20	Investigation of tigecycline bactericidal activity: Optimisation of laboratory testing. Journal of Global Antimicrobial Resistance, 2014, 2, 269-275.	2.2	5
21	Prediction of major antibiotic resistance in Escherichia coli and Klebsiella pneumoniae in Singapore, USA and China using a limited set of gene targets. International Journal of Antimicrobial Agents, 2014, 43, 563-565.	2.5	12
22	Performance of the Cepheid Xpert® SA Nasal Complete PCR assay compared to culture for detection of methicillin-sensitive and methicillin-resistant Staphylococcus aureus colonization. Diagnostic Microbiology and Infectious Disease, 2014, 80, 32-34.	1.8	20
23	Nasal Carriage of Epidemic Methicillin-Resistant Staphylococcus aureus 15 (EMRSA-15) Clone Observed in Three Chicago-Area Long-Term Care Facilities. Antimicrobial Agents and Chemotherapy, 2013, 57, 4551-4553.	3.2	9
24	Clinical Significance of Methicillin-Resistant Staphylococcus aureus Colonization on Hospital Admission: One-Year Infection Risk. PLoS ONE, 2013, 8, e79716.	2.5	18
25	Molecular Laboratory Tests for the Diagnosis of Respiratory Tract Infection Due to Staphylococcus aureus. Clinical Infectious Diseases, 2011, 52, S361-S366.	5.8	16
26	Laboratory Testing for <i>Clostridium difficile</i> Infection. American Journal of Clinical Pathology, 2011, 136, 372-380.	0.7	53
27	Electronic Prediction Rules for Methicillin-Resistant <i>Staphylococcus aureus</i> Colonization. Infection Control and Hospital Epidemiology, 2011, 32, 9-19.	1.8	36
28	Multicenter Evaluation of the LightCycler Methicillin-Resistant <i>Staphylococcus aureus</i> (MRSA) Advanced Test as a Rapid Method for Detection of MRSA in Nasal Surveillance Swabs. Journal of Clinical Microbiology, 2010, 48, 1661-1666.	3.9	64
29	Point-Counterpoint: To Screen or Not To Screen for Methicillin-Resistant <i>Staphylococcusaureus</i> . Journal of Clinical Microbiology, 2010, 48, 683-689.	3.9	55
30	Universal Surveillance for Methicillin-Resistant Staphylococcus aureus in 3 Affiliated Hospitals. Annals of Internal Medicine, 2008, 148, 409.	3.9	391
31	Antimicrobial activity and pharmacokinetics/pharmacodynamics of the novel glycylcycline, tigecycline. Diagnostic Microbiology and Infectious Disease, 2005, 52, 163-164.	1.8	20
32	Towards targeted prescribing: will the cure for antimicrobial resistance be specific, directed therapy through improved diagnostic testing?. Journal of Antimicrobial Chemotherapy, 2004, 53, 902-905.	3.0	32