Lance R Peterson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/133783/publications.pdf

Version: 2024-02-01

566801 454577 1,035 32 15 30 citations h-index g-index papers 32 32 32 1085 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Universal Surveillance for Methicillin-Resistant Staphylococcus aureus in 3 Affiliated Hospitals. Annals of Internal Medicine, 2008, 148, 409.	2.0	391
2	Joint Transcriptional Control of Virulence and Resistance to Antibiotic and Environmental Stress in Acinetobacter baumannii. MBio, 2015, 6, e01660-15.	1.8	132
3	Multicenter Evaluation of the LightCycler Methicillin-Resistant <i>Staphylococcus aureus </i> (MRSA) Advanced Test as a Rapid Method for Detection of MRSA in Nasal Surveillance Swabs. Journal of Clinical Microbiology, 2010, 48, 1661-1666.	1.8	64
4	Point-Counterpoint: To Screen or Not To Screen for Methicillin-Resistant <i>Staphylococcusaureus </i> . Journal of Clinical Microbiology, 2010, 48, 683-689.	1.8	55
5	Laboratory Testing for <i>Clostridium difficile</i> Infection. American Journal of Clinical Pathology, 2011, 136, 372-380.	0.4	53
6	Electronic Prediction Rules for Methicillin-Resistant <i>Staphylococcus aureus</i> Colonization. Infection Control and Hospital Epidemiology, 2011, 32, 9-19.	1.0	36
7	Towards targeted prescribing: will the cure for antimicrobial resistance be specific, directed therapy through improved diagnostic testing?. Journal of Antimicrobial Chemotherapy, 2004, 53, 902-905.	1.3	32
8	Methicillin-Resistant Staphylococcus aureus Control in the 21st Century: Laboratory Involvement Affecting Disease Impact and Economic Benefit from Large Population Studies. Journal of Clinical Microbiology, 2016, 54, 2647-2654.	1.8	30
9	Evaluation of Multiple Real-Time PCR Tests on Nasal Samples in a Large MRSA Surveillance Program. American Journal of Clinical Pathology, 2015, 143, 652-658.	0.4	21
10	Antimicrobial activity and pharmacokinetics/pharmacodynamics of the novel glycylcycline, tigecycline. Diagnostic Microbiology and Infectious Disease, 2005, 52, 163-164.	0.8	20
11	Performance of the Cepheid Xpert® SA Nasal Complete PCR assay compared to culture for detection of methicillin-sensitive and methicillin-resistant Staphylococcus aureus colonization. Diagnostic Microbiology and Infectious Disease, 2014, 80, 32-34.	0.8	20
12	Reduction of methicillin-resistant Staphylococcus aureus infection in long-term care is possible while maintaining patient socialization: A prospective randomized clinical trial. American Journal of Infection Control, 2016, 44, 1622-1627.	1.1	19
13	Host response to Clostridium difficile infection: Diagnostics and detection. Journal of Global Antimicrobial Resistance, 2016, 7, 93-101.	0.9	19
14	Clinical Significance of Methicillin-Resistant Staphylococcus aureus Colonization on Hospital Admission: One-Year Infection Risk. PLoS ONE, 2013, 8, e79716.	1.1	18
15	Molecular Laboratory Tests for the Diagnosis of Respiratory Tract Infection Due to Staphylococcus aureus. Clinical Infectious Diseases, 2011, 52, S361-S366.	2.9	16
16	Nonutility of Catheter Tip Cultures for the Diagnosis of Central Line-Associated Bloodstream Infection. Clinical Infectious Diseases, 2015, 60, 492-493.	2.9	16
17	Prediction of major antibiotic resistance in Escherichia coli and Klebsiella pneumoniae in Singapore, USA and China using a limited set of gene targets. International Journal of Antimicrobial Agents, 2014, 43, 563-565.	1.1	12
18	Evaluation of the cobas Cdiff Test for Detection of Toxigenic Clostridium difficile in Stool Samples. Journal of Clinical Microbiology, 2017, 55, 3426-3436.	1.8	12

#	Article	IF	CITATIONS
19	Nasal Carriage of Epidemic Methicillin-Resistant Staphylococcus aureus 15 (EMRSA-15) Clone Observed in Three Chicago-Area Long-Term Care Facilities. Antimicrobial Agents and Chemotherapy, 2013, 57, 4551-4553.	1.4	9
20	Performance of 3 real-time PCR assays for direct detection of Staphylococcus aureus and MRSA from clinical samples. Diagnostic Microbiology and Infectious Disease, 2015, 83, 211-215.	0.8	9
21	Performance of the cobas MRSA/SA Test for Simultaneous Detection of Methicillin-Susceptible and Methicillin-Resistant Staphylococcus aureus From Nasal Swabs. American Journal of Clinical Pathology, 2017, 148, 119-127.	0.4	9
22	Prospective observational study on central lineâ€"associated bloodstream infections and central venous catheter occlusions using a negative displacement connector with an alcohol disinfecting cap. American Journal of Infection Control, 2017, 45, 115-120.	1.1	9
23	Nonimpact of Decolonization as an Adjunctive Measure to Contact Precautions for the Control of Methicillin-Resistant Staphylococcus aureus Transmission in Acute Care. Antimicrobial Agents and Chemotherapy, 2016, 60, 99-104.	1.4	6
24	The Impact of Recurrent Clostridium difficile Infection on Patients' Prevention Behaviors. Infection Control and Hospital Epidemiology, 2017, 38, 1351-1357.	1.0	6
25	Investigation of tigecycline bactericidal activity: Optimisation of laboratory testing. Journal of Global Antimicrobial Resistance, 2014, 2, 269-275.	0.9	5
26	Sensitivity of Surveillance Testing for Multidrug-Resistant Gram-Negative Bacteria in the Intensive Care Unit. Journal of Clinical Microbiology, 2014, 52, 4047-4048.	1.8	4
27	Molecular identification of staphylococcal bacteraemia. Lancet Infectious Diseases, The, 2014, 14, 94-96.	4.6	4
28	Reduced Clostridioides difficile infection in a pragmatic stepped-wedge initiative using admission surveillance to detect colonization. PLoS ONE, 2020, 15, e0230475.	1.1	4
29	Active Surveillance and Decolonization Without Isolation Is Effective in Preventing Methicillin-Resistant Staphylococcus aureus Transmission in the Psychiatry Units. Open Forum Infectious Diseases, 2014, 1, ofu067.	0.4	2
30	Validation of Active Surveillance Testing for Clostridium difficile Colonization Using the cobas Cdiff Test. Journal of Clinical Microbiology, 2018, 56, .	1.8	2
31	637Control of Methicillin-Resistant Staphylococcus aureus (MRSA) in Long Term Care is Possible While Maintaining Patient Socialization without Isolation. Open Forum Infectious Diseases, 2014, 1, S31-S31.	0.4	0
32	1035New Urine Reporting Criteria to Accurately Report Nosocomial Clinical Urinary Tract Infection. Open Forum Infectious Diseases, 2014, 1, S303-S303.	0.4	0