
Tuan Anh Nguyen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1337805/publications.pdf Version: 2024-02-01

Τιιλή Δήμ Νουνέη

#	Article	IF	CITATIONS
1	Secondary structure RNA elements control the cleavage activity of DICER. Nature Communications, 2022, 13, 2138.	12.8	21
2	Intramolecular ligation method (iLIME) for pre-miRNA quantification and sequencing. Rna, 2022, 28, 1028-1038.	3.5	3
3	Bulges control pri-miRNA processing in a position and strand-dependent manner. RNA Biology, 2021, 18, 1716-1726.	3.1	20
4	The conserved single-cleavage mechanism of animal DROSHA enzymes. Communications Biology, 2021, 4, 1332.	4.4	8
5	Human disease-associated single nucleotide polymorphism changes the orientation of DROSHA on pri-mir-146a. Rna, 2020, 26, 1777-1786.	3.5	12
6	Select amino acids in DGCR8 are essential for the UGU-pri-miRNA interaction and processing. Communications Biology, 2020, 3, 344.	4.4	14
7	The internal loops in the lower stem of primary microRNA transcripts facilitate single cleavage of human Microprocessor. Nucleic Acids Research, 2020, 48, 2579-2593.	14.5	24
8	Mismatched and wobble base pairs govern primary microRNA processing by human Microprocessor. Nature Communications, 2020, 11, 1926.	12.8	33
9	Orientation of Human Microprocessor on Primary MicroRNAs. Biochemistry, 2019, 58, 189-198.	2.5	26
10	SRSF3 recruits DROSHA to the basal junction of primary microRNAs. Rna, 2018, 24, 892-898.	3.5	67
11	Microprocessor depends on hemin to recognize the apical loop of primary microRNA. Nucleic Acids Research, 2018, 46, 5726-5736.	14.5	54
12	Structure of Human DROSHA. Cell, 2016, 164, 81-90.	28.9	187
13	A physiological significance of the functional interaction between Mus81 and Rad27 in homologous recombination repair. Nucleic Acids Research, 2015, 43, 1684-1699.	14.5	11
14	Functional Anatomy of the Human Microprocessor. Cell, 2015, 161, 1374-1387.	28.9	315
15	Adenylation of Maternally Inherited MicroRNAs by Wispy. Molecular Cell, 2014, 56, 696-707.	9.7	87
16	Biochemical studies of the Saccharomyces cerevisiae Mph1 helicase on junction-containing DNA structures. Nucleic Acids Research, 2012, 40, 2089-2106.	14.5	7
17	The Trans-autostimulatory Activity of Rad27 Suppresses dna2 Defects in Okazaki Fragment Processing. Journal of Biological Chemistry, 2012, 287, 8675-8687.	3.4	8
18	Analysis of subunit assembly and function of the <i>Saccharomyces cerevisiae</i> RNase H2 complex. FEBS Journal, 2011, 278, 4927-4942.	4.7	6

#	Article	IF	CITATIONS
19	Involvement of Vts1, a structure-specific RNA-binding protein, in Okazaki fragment processing in yeast. Nucleic Acids Research, 2010, 38, 1583-1595.	14.5	10
20	Genetic and functional interactions between Mus81-Mms4 and Rad27. Nucleic Acids Research, 2010, 38, 7611-7625.	14.5	23
21	Human Replication Factor C Stimulates Flap Endonuclease 1. Journal of Biological Chemistry, 2009, 284, 10387-10399.	3.4	15