Dongliang Chao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1337665/publications.pdf

Version: 2024-02-01

12330 15266 20,787 129 69 126 citations h-index g-index papers 134 134 134 15545 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Recent Advances in Znâ€lon Batteries. Advanced Functional Materials, 2018, 28, 1802564.	14.9	1,595
2	Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nature Communications, 2016, 7, 12122.	12.8	1,232
3	Roadmap for advanced aqueous batteries: From design of materials to applications. Science Advances, 2020, 6, eaba4098.	10.3	1,069
4	Pseudocapacitive Na-Ion Storage Boosts High Rate and Areal Capacity of Self-Branched 2D Layered Metal Chalcogenide Nanoarrays. ACS Nano, 2016, 10, 10211-10219.	14.6	844
5	An Electrolytic Zn–MnO ₂ Battery for Highâ€Voltage and Scalable Energy Storage. Angewandte Chemie - International Edition, 2019, 58, 7823-7828.	13.8	787
6	Nonaqueous Hybrid Lithiumâ€lon and Sodiumâ€lon Capacitors. Advanced Materials, 2017, 29, 1702093.	21.0	699
7	A Highâ€Rate and Stable Quasiâ€Solidâ€State Zincâ€Ion Battery with Novel 2D Layered Zinc Orthovanadate Array. Advanced Materials, 2018, 30, e1803181.	21.0	571
8	Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendriteâ€Free Zn Ion Batteries Achieved by a Lowâ€Cost Glucose Additive. Angewandte Chemie - International Edition, 2021, 60, 18247-18255.	13.8	529
9	Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Lowâ€Cost Antisolvents. Angewandte Chemie - International Edition, 2021, 60, 7366-7375.	13.8	516
10	Graphene Quantum Dots Coated VO ₂ Arrays for Highly Durable Electrodes for Li and Na Ion Batteries. Nano Letters, 2015, 15, 565-573.	9.1	493
11	A V ₂ O ₅ /Conductiveâ€Polymer Core/Shell Nanobelt Array on Threeâ€Dimensional Graphite Foam: A Highâ€Rate, Ultrastable, and Freestanding Cathode for Lithiumâ€lon Batteries. Advanced Materials, 2014, 26, 5794-5800.	21.0	450
12	Generic Synthesis of Carbon Nanotube Branches on Metal Oxide Arrays Exhibiting Stable Highâ€Rate and Longâ€Cycle Sodiumâ€Ion Storage. Small, 2016, 12, 3048-3058.	10.0	440
13	A New Type of Porous Graphite Foams and Their Integrated Composites with Oxide/Polymer Core/Shell Nanowires for Supercapacitors: Structural Design, Fabrication, and Full Supercapacitor Demonstrations. Nano Letters, 2014, 14, 1651-1658.	9.1	428
14	Selfâ€Assembly of Honeycombâ€like MoS ₂ Nanoarchitectures Anchored into Graphene Foam for Enhanced Lithiumâ€lon Storage. Advanced Materials, 2014, 26, 7162-7169.	21.0	408
15	In Situ Grown Epitaxial Heterojunction Exhibits Highâ€Performance Electrocatalytic Water Splitting. Advanced Materials, 2018, 30, e1705516.	21.0	375
16	All Metal Nitrides Solidâ€State Asymmetric Supercapacitors. Advanced Materials, 2015, 27, 4566-4571.	21.0	371
17	Solution synthesis of metal oxides for electrochemical energy storage applications. Nanoscale, 2014, 6, 5008-5048.	5. 6	363
18	Confining Sulfur in Integrated Composite Scaffold with Highly Porous Carbon Fibers/Vanadium Nitride Arrays for Highâ€Performance Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1706391.	14.9	350

#	Article	IF	Citations
19	Transition metal dichalcogenides for alkali metal ion batteries: engineering strategies at the atomic level. Energy and Environmental Science, 2020, 13, 1096-1131.	30.8	266
20	Three-dimensional graphene and their integrated electrodes. Nano Today, 2014, 9, 785-807.	11.9	251
21	Ni3S2@MoS2 core/shell nanorod arrays on Ni foam for high-performance electrochemical energy storage. Nano Energy, 2014, 7, 151-160.	16.0	245
22	Porous \hat{l}_{\pm} -Fe 2 O 3 nanorods supported on carbon nanotubes-graphene foam as superior anode for lithium ion batteries. Nano Energy, 2014, 9, 364-372.	16.0	241
23	Mechanism for Zincophilic Sites on Zincâ€Metal Anode Hosts in Aqueous Batteries. Advanced Energy Materials, 2021, 11, 2003419.	19.5	233
24	TMD-based highly efficient electrocatalysts developed by combined computational and experimental approaches. Chemical Society Reviews, 2018, 47, 4332-4356.	38.1	232
25	Toward High-Voltage Aqueous Batteries: Super- or Low-Concentrated Electrolyte?. Joule, 2020, 4, 1846-1851.	24.0	223
26	Atomic Engineering Catalyzed MnO ₂ Electrolysis Kinetics for a Hybrid Aqueous Battery with High Power and Energy Density. Advanced Materials, 2020, 32, e2001894.	21.0	221
27	Tubular TiC fibre nanostructures as supercapacitor electrode materials with stable cycling life and wide-temperature performance. Energy and Environmental Science, 2015, 8, 1559-1568.	30.8	210
28	Controllable Growth of Conducting Polymers Shell for Constructing High-Quality Organic/Inorganic Core/Shell Nanostructures and Their Optical-Electrochemical Properties. Nano Letters, 2013, 13, 4562-4568.	9.1	197
29	Flexible Quasiâ€Solidâ€State Sodiumâ€Ion Capacitors Developed Using 2D Metal–Organicâ€Framework Array Reactor. Advanced Energy Materials, 2018, 8, 1702769.	as 19.5	195
30	Electronic Modulation of Nonâ€van der Waals 2D Electrocatalysts for Efficient Energy Conversion. Advanced Materials, 2021, 33, e2008422.	21.0	190
31	Hierarchical Porous LiNi1/3Co1/3Mn1/3O2 Nano-/Micro Spherical Cathode Material: Minimized Cation Mixing and Improved Li+ Mobility for Enhanced Electrochemical Performance. Scientific Reports, 2016, 6, 25771.	3.3	178
32	MoS2 nanosheets decorated Ni3S2@MoS2 coaxial nanofibers: Constructing an ideal heterostructure for enhanced Na-ion storage. Nano Energy, 2016, 20, 1-10.	16.0	178
33	Vanadateâ€Based Materials for Liâ€ion Batteries: The Search for Anodes for Practical Applications. Advanced Energy Materials, 2019, 9, 1803324.	19.5	168
34	TiO2 nanotube @ SnO2 nanoflake core–branch arrays for lithium-ion battery anode. Nano Energy, 2014, 4, 105-112.	16.0	165
35	Ultrafastâ€Charging Supercapacitors Based on Cornâ€Like Titanium Nitride Nanostructures. Advanced Science, 2016, 3, 1500299.	11.2	163
36	Sodium Vanadium Fluorophosphates (NVOPF) Array Cathode Designed for Highâ€Rate Full Sodium Ion Storage Device. Advanced Energy Materials, 2018, 8, 1800058.	19.5	157

#	Article	IF	CITATIONS
37	VO ₂ nanoflake arrays for supercapacitor and Li-ion battery electrodes: performance enhancement by hydrogen molybdenum bronze as an efficient shell material. Materials Horizons, 2015, 2, 237-244.	12.2	152
38	Electronâ€State Confinement of Polysulfides for Highly Stable Sodium–Sulfur Batteries. Advanced Materials, 2020, 32, e1907557.	21.0	150
39	Sulfur-Based Aqueous Batteries: Electrochemistry and Strategies. Journal of the American Chemical Society, 2021, 143, 15475-15489.	13.7	148
40	Microscale Silicon-Based Anodes: Fundamental Understanding and Industrial Prospects for Practical High-Energy Lithium-lon Batteries. ACS Nano, 2021, 15, 15567-15593.	14.6	146
41	Co ^{2+/3+/4+} â€Regulated Electron State of Mnâ€O for Superb Aqueous Zincâ€Manganese Oxide Batteries. Advanced Energy Materials, 2021, 11, 2003203.	19.5	144
42	Graphene nanowires anchored to 3D graphene foam via self-assembly for high performance Li and Na ion storage. Nano Energy, 2017, 37, 108-117.	16.0	143
43	Revealing Principles for Design of Lean-Electrolyte Lithium Metal Anode via In Situ Spectroscopy. Journal of the American Chemical Society, 2020, 142, 2012-2022.	13.7	142
44	A scalable top-down strategy toward practical metrics of Ni–Zn aqueous batteries with total energy densities of 165 W h kg ^{ⰹ1} and 506 W h L ^{ⰹ1} . Energy and Environmental Science, 2020, 13, 4157-4167.	30.8	142
45	Novel Metal@Carbon Spheres Core–Shell Arrays by Controlled Selfâ€Assembly of Carbon Nanospheres: A Stable and Flexible Supercapacitor Electrode. Advanced Energy Materials, 2015, 5, 1401709.	19.5	139
46	Multi-shell hollow structured Sb2S3 for sodium-ion batteries with enhanced energy density. Nano Energy, 2019, 60, 591-599.	16.0	136
47	Intercalation Pseudocapacitive Behavior Powers Aqueous Batteries. CheM, 2019, 5, 1359-1361.	11.7	128
48	The origin of capacity fluctuation and rescue of dead Mn-based Zn–ion batteries: a Mn-based competitive capacity evolution protocol. Energy and Environmental Science, 2022, 15, 1106-1118.	30.8	124
49	Câ€Plasma of Hierarchical Graphene Survives SnS Bundles for Ultrastable and High Volumetric Naâ€ion Storage. Advanced Materials, 2018, 30, e1804833.	21.0	117
50	Unveiling the Advances of 2D Materials for Li/Na-S Batteries Experimentally and Theoretically. Matter, 2020, 2, 323-344.	10.0	115
51	An Electrolytic Zn–MnO ₂ Battery for Highâ€Voltage and Scalable Energy Storage. Angewandte Chemie, 2019, 131, 7905-7910.	2.0	114
52	Integrated Photoâ€6upercapacitor Based on PEDOT Modified Printable Perovskite Solar Cell. Advanced Materials Technologies, 2016, 1, 1600074.	5.8	110
53	Rapid Pseudocapacitive Sodiumâ€lon Response Induced by 2D Ultrathin Tin Monoxide Nanoarrays. Advanced Functional Materials, 2017, 27, 1606232.	14.9	108
54	Opportunities of Aqueous Manganeseâ€Based Batteries with Deposition and Stripping Chemistry. Advanced Energy Materials, 2021, 11, 2002904.	19.5	107

#	Article	IF	Citations
55	Self-branched α-MnO ₂ /δ-MnO ₂ heterojunction nanowires with enhanced pseudocapacitance. Materials Horizons, 2017, 4, 415-422.	12.2	105
56	Vertical graphene/Ti2Nb10O29/hydrogen molybdenum bronze composite arrays for enhanced lithium ion storage. Energy Storage Materials, 2018, 12, 137-144.	18.0	103
57	Enhanced Lithium Storage Performance of CuO Nanowires by Coating of Graphene Quantum Dots. Advanced Materials Interfaces, 2015, 2, 1400499.	3.7	102
58	Recent progress in surface coating of layered LiNi x Co y Mn z O 2 for lithium-ion batteries. Materials Research Bulletin, 2017, 96, 491-502.	5.2	102
59	Intercalation Na-ion storage in two-dimensional MoS2-xSex and capacity enhancement by selenium substitution. Energy Storage Materials, 2018, 14, 136-142.	18.0	102
60	Hierarchical Confinement Effect with Zincophilic and Spatial Traps Stabilized Zn-Based Aqueous Battery. Nano Letters, 2022, 22, 4223-4231.	9.1	99
61	Borophene as Efficient Sulfur Hosts for Lithium–Sulfur Batteries: Suppressing Shuttle Effect and Improving Conductivity. Journal of Physical Chemistry C, 2017, 121, 15549-15555.	3.1	97
62	Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendriteâ€Free Zn Ion Batteries Achieved by a Low ost Glucose Additive. Angewandte Chemie, 2021, 133, 18395-18403.	2.0	97
63	Graphene quantum dots-shielded Na3(VO)2(PO4)2F@C nanocuboids as robust cathode for Na-ion battery. Energy Storage Materials, 2016, 5, 198-204.	18.0	88
64	Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Lowâ€Cost Antisolvents. Angewandte Chemie, 2021, 133, 7442-7451.	2.0	87
65	Targeted Synergy between Adjacent Co Atoms on Graphene Oxide as an Efficient New Electrocatalyst for Li–CO ₂ Batteries. Advanced Functional Materials, 2019, 29, 1904206.	14.9	86
66	Phase evolution of lithium intercalation dynamics in 2H-MoS ₂ . Nanoscale, 2017, 9, 7533-7540.	5.6	83
67	Flexible Pseudocapacitive Electrochromics via Inkjet Printing of Additiveâ€Free Tungsten Oxide Nanocrystal Ink. Advanced Energy Materials, 2020, 10, 2000142.	19.5	82
68	Revealing the Origin of Improved Reversible Capacity of Dual-Shell Bismuth Boxes Anode for Potassium-Ion Batteries. Matter, 2019, 1, 1681-1693.	10.0	81
69	A low-cost and one-step synthesis of N-doped monolithic quasi-graphene films with porous carbon frameworks for Li-ion batteries. Nano Energy, 2015, 17, 43-51.	16.0	73
70	High-rate and ultra-stable Na-ion storage for Ni3S2 nanoarrays via self-adaptive pseudocapacitance. Electrochimica Acta, 2018, 265, 709-716.	5.2	70
71	Partial Nitridationâ€Induced Electrochemistry Enhancement of Ternary Oxide Nanosheets for Fiber Energy Storage Device. Advanced Energy Materials, 2018, 8, 1800685.	19.5	70
72	An Energetic CuS–Cu Battery System Based on CuS Nanosheet Arrays. ACS Nano, 2021, 15, 5420-5427.	14.6	66

#	Article	IF	Citations
73	Al ₂ O ₃ â€Assisted Confinement Synthesis of Oxide/Carbon Hollow Composite Nanofibers and Application in Metalâ€ion Capacitors. Small, 2020, 16, e2001950.	10.0	65
74	Is borophene a suitable anode material for sodium ion battery?. Journal of Alloys and Compounds, 2017, 704, 152-159.	5. 5	62
75	Self-adaptive electrochemical reconstruction boosted exceptional Li ⁺ ion storage in a Cu ₃ P@C anode. Journal of Materials Chemistry A, 2018, 6, 18821-18826.	10.3	60
76	Amorphous VO ₂ : A Pseudocapacitive Platform for Highâ€Rate Symmetric Batteries. Advanced Materials, 2021, 33, e2103736.	21.0	60
77	Ultrathin MoSe ₂ @N-doped carbon composite nanospheres for stable Na-ion storage. Nanotechnology, 2017, 28, 42LT01.	2.6	55
78	Toward greener lithium-ion batteries: Aqueous binder-based LiNi0.4Co0.2Mn0.4O2 cathode material with superior electrochemical performance. Journal of Power Sources, 2017, 372, 180-187.	7.8	54
79	Aqueous zinc-ion batteries at extreme temperature: Mechanisms, challenges, and strategies. Energy Storage Materials, 2022, 51, 683-718.	18.0	54
80	Catalytic Oxidation of K ₂ S via Atomic Co and Pyridinic N Synergy in Potassium–Sulfur Batteries. Journal of the American Chemical Society, 2021, 143, 16902-16907.	13.7	53
81	Atomicâ€Layerâ€Deposited Amorphous MoS ₂ for Durable and Flexible Li–O ₂ Batteries. Small Methods, 2020, 4, 1900274.	8.6	52
82	MoS ₂ architectures supported on graphene foam/carbon nanotube hybrid films: highly integrated frameworks with ideal contact for superior lithium storage. Journal of Materials Chemistry A, 2015, 3, 17534-17543.	10.3	51
83	1D nanobar-like LiNi _{0.4} Co _{0.2} Mn _{0.4} O ₂ as a stable cathode material for lithium-ion batteries with superior long-term capacity retention and high rate capability. Journal of Materials Chemistry A, 2017, 5, 15669-15675.	10.3	51
84	Design rules of heteroatom-doped graphene to achieve high performance lithium–sulfur batteries: Both strong anchoring and catalysing based on first principles calculation. Journal of Colloid and Interface Science, 2018, 529, 426-431.	9.4	50
85	Energetic Aqueous Batteries. Advanced Energy Materials, 2022, 12, .	19.5	48
86	Amorphous GaN@Cu Freestanding Electrode for Highâ€Performance Liâ€Ion Batteries. Advanced Functional Materials, 2017, 27, 1701808.	14.9	47
87	Hollow nickel nanocorn arrays as three-dimensional and conductive support for metal oxides to boost supercapacitive performance. Nanoscale, 2014, 6, 5691-5697.	5.6	42
88	The roles of lithium-philic giant nitrogen-doped graphene in protecting micron-sized silicon anode from fading. Scientific Reports, 2015, 5, 15665.	3.3	42
89	Refined Sulfur Nanoparticles Immobilized in Metal–Organic Polyhedron as Stable Cathodes for Li–S Battery. ACS Applied Materials & Interfaces, 2016, 8, 14328-14333.	8.0	42
90	Constructing Unique Mesoporous Carbon Superstructures via Monomicelle Interface Confined Assembly. Journal of the American Chemical Society, 2022, 144, 11767-11777.	13.7	41

#	Article	IF	Citations
91	Improvement in high-temperature performance of Co-free high-Fe AB5-type hydrogen storage alloys. International Journal of Hydrogen Energy, 2012, 37, 12375-12383.	7.1	40
92	Making MXenes more energetic in aqueous battery. Matter, 2022, 5, 8-10.	10.0	36
93	Repeated microwave-assisted exfoliation of expandable graphite for the preparation of large scale and high quality multi-layer graphene. RSC Advances, 2013, 3, 11601.	3.6	35
94	2D-VN2 MXene as a novel anode material for Li, Na and K ion batteries: Insights from the first-principles calculations. Journal of Colloid and Interface Science, 2021, 593, 51-58.	9.4	35
95	Microwave-assisted production of giant graphene sheets for high performance energy storage applications. Journal of Materials Chemistry A, 2014, 2, 12166-12170.	10.3	34
96	Revealing the Magnesiumâ€Storage Mechanism in Mesoporous Bismuth via Spectroscopy and Abâ€Initio Simulations. Angewandte Chemie - International Edition, 2020, 59, 21728-21735.	13.8	34
97	Interface Synergistic Effect from Layered Metal Sulfides of MoS ₂ /SnS ₂ van der Waals Heterojunction with Enhanced Li-Ion Storage Performance. Journal of Physical Chemistry C, 2018, 122, 24600-24608.	3.1	32
98	A 2.0 V capacitive device derived from shape-preserved metal nitride nanorods. Nano Energy, 2016, 26, 1-6.	16.0	31
99	Confined Fe ₂ O ₃ Nanoparticles on Graphite Foam as Highâ€Rate and Stable Lithiumâ€lon Battery Anode. Particle and Particle Systems Characterization, 2016, 33, 487-492.	2.3	29
100	Surface-Electronic-Structure Reconstruction of Perovskite via Double-Cation Gradient Etching for Superior Water Oxidation. Nano Letters, 2021, 21, 8166-8174.	9.1	29
101	Heterogeneous Nanostructures for Sodium Ion Batteries and Supercapacitors. ChemNanoMat, 2015, 1, 458-476.	2.8	28
102	Unusual Mesoporous Titanium Niobium Oxides Realizing Sodiumâ€lon Batteries Operated at â^'40°C. Advanced Materials, 2022, 34, e2202873.	21.0	28
103	Advanced <i>in situ</i> technology for Li/Na metal anodes: an in-depth mechanistic understanding. Energy and Environmental Science, 2021, 14, 3872-3911.	30.8	27
104	Theoretical calculation and experimental verification of Zn3V3O8 as an insertion type anode for LIBs. Journal of Alloys and Compounds, 2018, 730, 228-233.	5.5	23
105	Ag Embedded Li ₃ VO ₄ as Superior Anode for Li-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A5295-A5300.	2.9	22
106	Nanoengineering of 2D tin sulfide nanoflake arrays incorporated on polyaniline nanofibers with boosted capacitive behavior. 2D Materials, 2018, 5, 031005.	4.4	20
107	Surfactant-assisted encapsulation of uniform SnO ₂ nanoparticles in graphene layers for high-performance Li-storage. 2D Materials, 2015, 2, 014005.	4.4	18
108	Hierarchical porous LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ with yolkâ€"shell-like architecture as stable cathode material for lithium-ion batteries. RSC Advances, 2020, 10, 18776-18783.	3.6	18

#	Article	IF	Citations
109	Atomic engineering promoted electrooxidation kinetics of manganese-based cathode for stable aqueous zinc-ion batteries. Nano Research, 2022, 15, 8603-8612.	10.4	17
110	Microstructures and electrochemical properties of LaNi3.8â^'xMnx hydrogen storage alloys. Electrochimica Acta, 2011, 58, 668-673.	5.2	16
111	Composition optimization and electrochemical characteristics of Co-free Fe-containing AB5-type hydrogen storage alloys through uniform design. Journal of Rare Earths, 2012, 30, 361-366.	4.8	14
112	Large size nitrogen-doped graphene-coated graphite for high performance lithium-ion battery anode. RSC Advances, 2016, 6, 104010-104015.	3.6	14
113	Hierarchical vertical graphene nanotube arrays via universal carbon plasma processing strategy: A platform for high-rate performance battery electrodes. Energy Storage Materials, 2019, 18, 462-469.	18.0	14
114	Hydrogenated dual-shell sodium titanate cubes for sodium-ion batteries with optimized ion transportation. Journal of Materials Chemistry A, 2020, 8, 15829-15833.	10.3	14
115	Steep capacity loss of discharged state metal-hydride electrode and its mechanism. Electrochimica Acta, 2012, 66, 22-27.	5.2	9
116	Synchrotron Xâ€ray Spectroscopic Investigations of Inâ€Situâ€Formed Alloy Anodes for Magnesium Batteries. Advanced Materials, 2022, 34, e2108688.	21.0	9
117	Effects of Co Substitution for Ni on Microstructures and Electrochemical Properties of LaNi3.8 Hydrogen Storage Alloys. Rare Metal Materials and Engineering, 2014, 43, 519-524.	0.8	6
118	Three-dimensional TiNb ₂ O ₇ anchored on carbon nanofiber core–shell arrays as an anode for high-rate lithium ion storage. RSC Advances, 2020, 10, 6342-6350.	3.6	6
119	Revealing the Magnesiumâ€Storage Mechanism in Mesoporous Bismuth via Spectroscopy and Abâ€Initio Simulations. Angewandte Chemie, 2020, 132, 21912-21919.	2.0	4
120	C-plasma derived precise volumetric buffering for high-rate and stable alloying-type energy storage. Nano Energy, 2021, 80, 105557.	16.0	4
121	Influence factors of capacity loss after short-time standing of metal-hydride electrode and its EIS model. Journal of Rare Earths, 2013, 31, 772-777.	4.8	3
122	Hybrid Aqueous Batteries: Atomic Engineering Catalyzed MnO ₂ Electrolysis Kinetics for a Hybrid Aqueous Battery with High Power and Energy Density (Adv. Mater. 25/2020). Advanced Materials, 2020, 32, 2070191.	21.0	3
123	Phosphorus-Regulated Nitrogen Sites in Ultrathin Carbon Scrolls for Stable Potassium Storage. ACS Applied Energy Materials, 2022, 5, 8526-8537.	5.1	2
124	Vanadium Pentoxide for Li-Ion Storage. Springer Theses, 2019, , 29-50.	0.1	1
125	Vanadium Dioxide for Li- and Na-Ion Storage. Springer Theses, 2019, , 51-73.	0.1	0
126	Na3(VO)2(PO4)2F Array for Cathode of Na-Ion Battery. Springer Theses, 2019, , 75-91.	0.1	0

DONGLIANG CHAO

#	Article	IF	CITATIONS
127	Graphene Network Scaffolded Flexible Electrodes—From Lithium to Sodium Ion Batteries. Springer Theses, 2019, , .	0.1	O
128	SnS Array for Anode of Na-Ion Battery. Springer Theses, 2019, , 93-115.	0.1	0
129	Graphene Quantum Dots Coating Enhances Lithium Storage Performance of CuO Nanowires. , 2015, , .		O