Debbie C. Crans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1337345/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vanadium compounds promote biocatalysis in cells through actions on cell membranes. Catalysis Today, 2022, 388-389, 216-223.	4.4	3
2	Convergent Protein Phosphatase Inhibitor Design for PTP1B and TCPTP: Exchangeable Vanadium Coordination Complexes on Graphene Quantum Dots. Advanced Functional Materials, 2022, 32, 2108645.	14.9	12
3	Polyoxidovanadates' interactions with proteins: An overview. Coordination Chemistry Reviews, 2022, 454, 214344.	18.8	78
4	Solution- and gas-phase behavior of decavanadate: implications for mass spectrometric analysis of redox-active polyoxidometalates. Inorganic Chemistry Frontiers, 2022, 9, 1556-1564.	6.0	5
5	Biological Effects of Monoenergetic Carbon Ions and Their Associated Secondary Particles. Frontiers in Oncology, 2022, 12, 788293.	2.8	4
6	Electron Transport Lipids Fold Within Membrane-Like Interfaces. Frontiers in Chemistry, 2022, 10, 827530.	3.6	2
7	Metallomics and other omics approaches in antiparasitic metal-based drug research. Current Opinion in Chemical Biology, 2022, 67, 102127.	6.1	11
8	Advantageous Reactivity of Unstable Metal Complexes: Potential Applications of Metal-Based Anticancer Drugs for Intratumoral Injections. Pharmaceutics, 2022, 14, 790.	4.5	15
9	Exploring Growth of Mycobacterium smegmatis Treated with Anticarcinogenic Vanadium Compounds. Inorganics, 2022, 10, 50.	2.7	9
10	Structural Analysis of SMYD3 Lysine Methyltransferase for the Development of Competitive and Specific Enzyme Inhibitors. Diseases (Basel, Switzerland), 2022, 10, 4.	2.5	4
11	Highlighting the roles of transition metals and speciation in chemical biology. Current Opinion in Chemical Biology, 2022, 69, 102155.	6.1	17
12	Vanadium(IV)-diamine complex with hypoglycemic activity and a reduction in testicular atrophy. Journal of Inorganic Biochemistry, 2021, 216, 111312.	3.5	13
13	Exploiting DNA repair pathways for tumor sensitization, mitigation of resistance, and normal tissue protection in radiotherapy. , 2021, 4, 244-263.		14
14	PtIV- or MoVI-substituted decavanadates inhibit the growth of Mycobacterium smegmatis. Journal of Inorganic Biochemistry, 2021, 217, 111356.	3.5	14
15	Acute Toxicity Evaluation of Non-Innocent Oxidovanadium(V) Schiff Base Complex. Inorganics, 2021, 9, 42.	2.7	20
16	Measurement of Interpeptidic Cu ^{II} Exchange Rate Constants of Cu ^{II} -Amyloid-β Complexes to Small Peptide Motifs by Tryptophan Fluorescence Quenching. Inorganic Chemistry, 2021, 60, 7650-7659.	4.0	5
17	High LET-Like Radiation Tracks at the Distal Side of Accelerated Proton Bragg Peak. Frontiers in Oncology, 2021, 11, 690042.	2.8	10
18	Interactions of Truncated Menaquinones in Lipid Monolayers and Bilayers. International Journal of Molecular Sciences, 2021, 22, 9755.	4.1	3

#	Article	IF	CITATIONS
19	Polyoxovanadates with emerging biomedical activities. Coordination Chemistry Reviews, 2021, 447, 214143.	18.8	115
20	Cytotoxicity and genotoxicity of blue LED light and protective effects of AA2G in mammalian cells and associated DNA repair deficient cell lines. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2021, 872, 503416.	1.7	4
21	The Interfacial Interactions of Glycine and Short Glycine Peptides in Model Membrane Systems. International Journal of Molecular Sciences, 2021, 22, 162.	4.1	4
22	Application of HPLC to measure vanadium in environmental, biological and clinical matrices. Arabian Journal of Chemistry, 2020, 13, 1198-1228.	4.9	17
23	Effects of vanadium(IV) compounds on plasma membrane lipids lead to G protein-coupled receptor signal transduction. Journal of Inorganic Biochemistry, 2020, 203, 110873.	3.5	14
24	Coordination Chemistry of a Controlled Burst of Zn ² ⁺ in Bulk Aqueous and Nanosized Water Droplets with a Zincon Chelator. Inorganic Chemistry, 2020, 59, 184-188.	4.0	2
25	Synthesis of Naphthoquinone Derivatives: Menaquinones, Lipoquinones and Other Vitamin K Derivatives. Molecules, 2020, 25, 4477.	3.8	14
26	Evaluating the Genotoxic and Cytotoxic Effects of Thymidine Analogs, 5-Ethynyl-2â€2-Deoxyuridine and 5-Bromo-2â€2-Deoxyurdine to Mammalian Cells. International Journal of Molecular Sciences, 2020, 21, 6631.	4.1	12
27	The Acid–Base Equilibrium of Pyrazinoic Acid Drives the pH Dependence of Pyrazinamide-Induced <i>Mycobacterium tuberculosis</i> Growth Inhibition. ACS Infectious Diseases, 2020, 6, 3004-3014.	3.8	7
28	A Short‣ived but Highly Cytotoxic Vanadium(V) Complex as a Potential Drug Lead for Brain Cancer Treatment by Intratumoral Injections. Angewandte Chemie, 2020, 132, 15968-15972.	2.0	8
29	<i>Mycobacterium tuberculosis</i> Survival in J774A.1 Cells Is Dependent on MenJ Moonlighting Activity, Not Its Enzymatic Activity. ACS Infectious Diseases, 2020, 6, 2661-2671.	3.8	6
30	Open questions on the biological roles of first-row transition metals. Communications Chemistry, 2020, 3, .	4.5	52
31	Glycoprotein C-protein Coupled Receptors in Disease: Luteinizing Hormone Receptors and Follicle Stimulating Hormone Receptors. Diseases (Basel, Switzerland), 2020, 8, 35.	2.5	17
32	In Silico/In Vitro Hit-to-Lead Methodology Yields SMYD3 Inhibitor That Eliminates Unrestrained Proliferation of Breast Carcinoma Cells. International Journal of Molecular Sciences, 2020, 21, 9549.	4.1	6
33	Frontispiz: A Shortâ€Lived but Highly Cytotoxic Vanadium(V) Complex as a Potential Drug Lead for Brain Cancer Treatment by Intratumoral Injections. Angewandte Chemie, 2020, 132, .	2.0	0
34	Frontispiece: A Short‣ived but Highly Cytotoxic Vanadium(V) Complex as a Potential Drug Lead for Brain Cancer Treatment by Intratumoral Injections. Angewandte Chemie - International Edition, 2020, 59, .	13.8	0
35	Characterizing the Role of SMYD2 in Mammalian Embryogenesis—Future Directions. Veterinary Sciences, 2020, 7, 63.	1.7	5
36	Location of menaquinone and menaquinol headgroups in model membranes. Canadian Journal of Chemistry, 2020, 98, 307-317.	1.1	3

#	Article	IF	CITATIONS
37	Initiation of a novel mode of membrane signaling: Vanadium facilitated signal transduction. Coordination Chemistry Reviews, 2020, 416, 213286.	18.8	27
38	A Short‣ived but Highly Cytotoxic Vanadium(V) Complex as a Potential Drug Lead for Brain Cancer Treatment by Intratumoral Injections. Angewandte Chemie - International Edition, 2020, 59, 15834-15838.	13.8	46
39	Cytotoxicity and Mutagenicity of Narrowband UVB to Mammalian Cells. Genes, 2020, 11, 646.	2.4	9
40	ESI-MS Study of the Interaction of Potential Oxidovanadium(IV) Drugs and Amavadin with Model Proteins. Inorganic Chemistry, 2020, 59, 9739-9755.	4.0	28
41	Ascorbic Acid 2-Glucoside Pretreatment Protects Cells from Ionizing Radiation, UVC, and Short Wavelength of UVB. Genes, 2020, 11, 238.	2.4	9
42	Electron Scattering in Conventional Cell Flask Experiments and Dose Distribution Dependency. Scientific Reports, 2020, 10, 482.	3.3	1
43	Polyoxometalates function as indirect activators of a G protein-coupled receptor. Metallomics, 2020, 12, 1044-1061.	2.4	22
44	Exploring Wells-Dawson Clusters Associated With the Small Ribosomal Subunit. Frontiers in Chemistry, 2019, 7, 462.	3.6	6
45	Reciprocal Translocation Analysis with Whole Chromosome Painting for FISH. Methods in Molecular Biology, 2019, 1984, 117-122.	0.9	1
46	Micronuclei Formation Analysis After Ionizing Radiation. Methods in Molecular Biology, 2019, 1984, 23-29.	0.9	0
47	Sister Chromatid Exchange as a Genotoxic Stress Marker. Methods in Molecular Biology, 2019, 1984, 61-68.	0.9	4
48	PNA Telomere and Centromere FISH Staining for Accurate Analysis of Radiation-Induced Chromosomal Aberrations. Methods in Molecular Biology, 2019, 1984, 95-100.	0.9	2
49	Human Lymphocyte Metaphase Chromosome Preparation for Radiation-Induced Chromosome Aberration Analysis. Methods in Molecular Biology, 2019, 1984, 1-6.	0.9	5
50	In Situ DNA Damaging Foci Analysis on Metaphase Chromosomes. Methods in Molecular Biology, 2019, 1984, 87-93.	0.9	1
51	G2 Chromosomal Radiosensitivity Assay for Testing Individual Radiation Sensitivity. Methods in Molecular Biology, 2019, 1984, 39-45.	0.9	2
52	Editorial: Polyoxometalates in Catalysis, Biology, Energy and Materials Science. Frontiers in Chemistry, 2019, 7, 646.	3.6	20
53	The First-Row Transition Metals in the Periodic Table of Medicine. Inorganics, 2019, 7, 111.	2.7	31
54	DIFFERENCE IN DEGREE OF SUB-LETHAL DAMAGE RECOVERY BETWEEN CLINICAL PROTON BEAMS AND X-RAYS. Radiation Protection Dosimetry, 2019, 183, 93-97.	0.8	4

#	Article	IF	CITATIONS
55	Enhancement of oncolytic virotherapy by vanadium(V) dipicolinates. BioMetals, 2019, 32, 545-561.	4.1	19
56	Speciation and toxicity of rhenium salts, organometallics and coordination complexes. Coordination Chemistry Reviews, 2019, 394, 135-161.	18.8	32
57	Organometallic and coordination rhenium compounds and their potential in cancer therapy. Coordination Chemistry Reviews, 2019, 393, 79-117.	18.8	135
58	Oxidative stress and endoreduplication induced by blue light exposure to CHO cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2019, 841, 31-35.	1.7	13
59	Monoenergetic 290 MeV/n carbon-ion beam biological lethal dose distribution surrounding the Bragg peak. Scientific Reports, 2019, 9, 6157.	3.3	11
60	Hydrophobicity may enhance membrane affinity and anti-cancer effects of Schiff base vanadium(<scp>v</scp>) catecholate complexes. Dalton Transactions, 2019, 48, 6383-6395.	3.3	51
61	The Effect of Green and Black Tea Polyphenols on BRCA2 Deficient Chinese Hamster Cells by Synthetic Lethality through PARP Inhibition. International Journal of Molecular Sciences, 2019, 20, 1274.	4.1	4
62	A Transition-State Perspective on Y-Family DNA Polymerase Ε Fidelity in Comparison with X-Family DNA Polymerases λ and β. Biochemistry, 2019, 58, 1764-1773.	2.5	10
63	Radiobiological Characterization of Canine Malignant Melanoma Cell Lines with Different Types of Ionizing Radiation and Efficacy Evaluation with Cytotoxic Agents. International Journal of Molecular Sciences, 2019, 20, 841.	4.1	9
64	Investigating Substrate Analogues for Mycobacterial MenJ: Truncated and Partially Saturated Menaquinones. Biochemistry, 2019, 58, 1596-1615.	2.5	9
65	8. DEVELOPING VANADIUM AS AN ANTIDIABETIC OR ANTICANCER DRUG: A CLINICAL AND HISTORICAL PERSPECTIVE. , 2019, 19, 203-230.		24
66	Vanadium science: chemistry, catalysis, materials, biological and medicinal studies. New Journal of Chemistry, 2019, 43, 17535-17537.	2.8	9
67	14. CHEMICAL AND CLINICAL ASPECTS OF METAL-CONTAINING ANTIDOTES FOR POISONING BY CYANIDE. , 2019, 19, 359-392.		29
68	Vanadium Compounds as Enzyme Inhibitors with a Focus on Anticancer Effects. 2-Oxoglutarate-Dependent Oxygenases, 2019, , 169-195.	0.8	2
69	Probing of ferrocenylanilines on model micelle/reverse micelle membrane and their enhanced reactivity for reactive oxidants. Applied Organometallic Chemistry, 2018, 32, e4334.	3.5	4
70	Measurement of Interpeptidic Cu(II) Exchange Rate Constants by Static Fluorescence Quenching of Tryptophan. Inorganic Chemistry, 2018, 57, 4791-4794.	4.0	14
71	15. IRON AND ITS ROLE IN CANCER DEFENSE: A DOUBLE-EDGED SWORD. , 2018, 18, 437-468.		31
72	Ru(II) Compounds: Next-Generation Anticancer Metallotherapeutics?. Journal of Medicinal Chemistry, 2018. 61. 5805-5821.	6.4	343

#	Article	IF	CITATIONS
73	Design and evaluation of a novel flavonoid-based radioprotective agent utilizing monoglucosyl rutin. Journal of Radiation Research, 2018, 59, 272-281.	1.6	11
74	9. HEALTH BENEFITS OF VANADIUM AND ITS POTENTIAL AS AN ANTICANCER AGENT. , 2018, 18, 251-280.		34
75	Multi-modal Potentiation of Oncolytic Virotherapy by Vanadium Compounds. Molecular Therapy, 2018, 26, 56-69.	8.2	77
76	A Synthetic Isoprenoid Lipoquinone, Menaquinone-2, Adopts a Folded Conformation in Solution and at a Model Membrane Interface. Journal of Organic Chemistry, 2018, 83, 275-288.	3.2	18
77	Effect of hydroxyl group position in flavonoids on inducing single‑stranded DNA damage mediated by cupric ions. International Journal of Molecular Medicine, 2018, 42, 658-664.	4.0	5
78	Synthesis and Characterization of Partially and Fully Saturated Menaquinone Derivatives. ACS Omega, 2018, 3, 14889-14901.	3.5	13
79	Decavanadate Inhibits Mycobacterial Growth More Potently Than Other Oxovanadates. Frontiers in Chemistry, 2018, 6, 519.	3.6	46
80	Palmitoyl ascorbic acid 2-glucoside has the potential to protect mammalian cells from high-LET carbon-ion radiation. Scientific Reports, 2018, 8, 13822.	3.3	10
81	Persistence of Gamma-H2AX Foci in Bronchial Cells Correlates with Susceptibility to Radiation Associated Lung Cancer in Mice. Radiation Research, 2018, 191, 67.	1.5	14
82	Structure Dependence of Pyridine and Benzene Derivatives on Interactions with Model Membranes. Langmuir, 2018, 34, 8939-8951.	3.5	4
83	Coordination environment changes of the vanadium in vanadium-dependent haloperoxidase enzymes. Journal of Inorganic Biochemistry, 2018, 186, 267-279.	3.5	42
84	Ferrocene-based anilides: synthesis, structural characterization and inhibition of butyrylcholinesterase. Dalton Transactions, 2018, 47, 11769-11781.	3.3	8
85	DNA Repair Deficient Chinese Hamster Ovary Cells Exhibiting Differential Sensitivity to Charged Particle Radiation under Aerobic and Hypoxic Conditions. International Journal of Molecular Sciences, 2018, 19, 2228.	4.1	16
86	Histone Deacetylase Inhibitor Induced Radiation Sensitization Effects on Human Cancer Cells after Photon and Hadron Radiation Exposure. International Journal of Molecular Sciences, 2018, 19, 496.	4.1	26
87	Confinement Effects on Chemical Equilibria: Pentacyano(Pyrazine)Ferrate(II) Stability Changes within Nanosized Droplets of Water. Molecules, 2018, 23, 858.	3.8	2
88	Mycobacterial MenJ: An Oxidoreductase Involved in Menaquinone Biosynthesis. ACS Chemical Biology, 2018, 13, 2498-2507.	3.4	31
89	Novel function of HATs and HDACs in homologous recombination through acetylation of human RAD52 at double-strand break sites. PLoS Genetics, 2018, 14, e1007277.	3.5	25
90	Coordination of the Ser2056 and Thr2609 Clusters of DNA-PKcs in Regulating Gamma Rays and Extremely Low Fluencies of Alpha-Particle Irradiation to G0/G1 Phase Cells. Radiation Research, 2017, 187, 259.	1.5	7

#	Article	IF	CITATIONS
91	Selenium speciation in the Fountain Creek Watershed and its effects on fish diversity. Journal of Biological Inorganic Chemistry, 2017, 22, 751-763.	2.6	4
92	Does anion-cation organization in Na+-containing X-ray crystal structures relate to solution interactions in inhomogeneous nanoscale environments: Sodium-decavanadate in solid state materials, minerals, and microemulsions. Coordination Chemistry Reviews, 2017, 344, 115-130.	18.8	28
93	Speciation of metal drugs, supplements and toxins in media and bodily fluids controls in vitro activities. Coordination Chemistry Reviews, 2017, 352, 473-498.	18.8	181
94	Hypersensitivity of BRCA2 deficient cells to rosemary extract explained by weak PARP inhibitory activity. Scientific Reports, 2017, 7, 16704.	3.3	5
95	Investigation of the relative biological effectiveness and uniform isobiological killing effects of irradiation with a clinical carbon SOBP beam on DNA repair deficient CHO cells. Oncology Letters, 2017, 13, 4911-4916.	1.8	6
96	PARP Inhibition by Flavonoids Induced Selective Cell Killing to BRCA2-Deficient Cells. Pharmaceuticals, 2017, 10, 80.	3.8	16
97	Selenium Speciation in the Fountain Creek Watershed (Colorado, USA) Correlates with Water Hardness, Ca and Mg Levels. Molecules, 2017, 22, 708.	3.8	10
98	How Interfaces Affect the Acidity of the Anilinium Ion. Chemistry - A European Journal, 2016, 22, 3873-3880.	3.3	6
99	Molecular dynamics simulation of telomeric single-stranded DNA and POT1. Polymer Journal, 2016, 48, 189-195.	2.7	5
100	Translational Science for Energy and Beyond. Inorganic Chemistry, 2016, 55, 9131-9143.	4.0	11
101	In vitro screening of radioprotective properties in the novel glucosylated flavonoids. International Journal of Molecular Medicine, 2016, 38, 1525-1530.	4.0	15
102	Selective speciation improves efficacy and lowers toxicity of platinum anticancer and vanadium antidiabetic drugs. Journal of Inorganic Biochemistry, 2016, 165, 56-70.	3.5	69
103	Relative biological effectiveness in canine osteosarcoma cells irradiated with accelerated charged particles. Oncology Letters, 2016, 12, 1597-1601.	1.8	8
104	Differences in Interactions of Benzoic Acid and Benzoate with Interfaces. Langmuir, 2016, 32, 9451-9459.	3.5	10
105	Novel glyceryl glucoside is a low toxic alternative for cryopreservation agent. Biochemical and Biophysical Research Communications, 2016, 476, 359-364.	2.1	11
106	Synthesis, structural characterization, modal membrane interaction and anti-tumor cell line studies of nitrophenyl ferrocenes. Journal of Molecular Structure, 2016, 1113, 162-170.	3.6	22
107	Size and shape trump charge in interactions of oxovanadates with self-assembled interfaces: application of continuous shape measure analysis to the decavanadate anion. New Journal of Chemistry, 2016, 40, 962-975.	2.8	18
108	Multinuclear NMR studies of aqueous vanadium–HEDTA complexes. Polyhedron, 2016, 114, 325-332.	2.2	10

#	Article	IF	CITATIONS
109	Introduction for the Emergent Polyoxometalates and Soft-oxometalates thematic issue. New Journal of Chemistry, 2016, 40, 882-885.	2.8	11
110	Data for induction of cytotoxic response by natural and novel quercetin glycosides. Data in Brief, 2016, 6, 262-266.	1.0	9
111	Intrinsic Radiosensitivity and Cellular Characterization of 27 Canine Cancer Cell Lines. PLoS ONE, 2016, 11, e0156689.	2.5	23
112	Hyperthermia-induced radiosensitization in CHO wild-type, NHEJ repair mutant and HR repair mutant following proton and carbon-ion exposure. Oncology Letters, 2015, 10, 2828-2834.	1.8	12
113	Validation of64Cu-ATSM damaging DNA via high-LET Auger electron emission. Journal of Radiation Research, 2015, 56, 784-791.	1.6	50
114	High-frequency and -field electron paramagnetic resonance of vanadium(IV, III, and II) complexes. Coordination Chemistry Reviews, 2015, 301-302, 123-133.	18.8	65
115	Vanadium–phosphatase complexes: Phosphatase inhibitors favor the trigonal bipyramidal transition state geometries. Coordination Chemistry Reviews, 2015, 301-302, 163-199.	18.8	115
116	NMR Crystallography for Structural Characterization of Oxovanadium(V) Complexes: Deriving Coordination Geometry and Detecting Weakly Coordinated Ligands at Atomic Resolution in the Solid State. Inorganic Chemistry, 2015, 54, 1363-1374.	4.0	15
117	Preface: Celebrating vanadium science with leading bioinorganic contributions from the 9th International Vanadium Symposium. Journal of Inorganic Biochemistry, 2015, 147, 1-3.	3.5	1
118	Effects of targeted phosphorylation site mutations in the DNA-PKcs phosphorylation domain on low and high LET radiation sensitivity. Oncology Letters, 2015, 9, 1621-1627.	1.8	9
119	Induction of cytotoxic and genotoxic responses by natural and novel quercetin glycosides. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2015, 784-785, 15-22.	1.7	49
120	Evaluating transition state structures of vanadium–phosphatase protein complexes using shape analysis. Journal of Inorganic Biochemistry, 2015, 147, 153-164.	3.5	33
121	Caspase-3 Promotes Genetic Instability and Carcinogenesis. Molecular Cell, 2015, 58, 284-296.	9.7	202
122	Role of various DNA repair pathways in chromosomal inversion formation in CHO mutants. International Journal of Radiation Biology, 2015, 91, 925-933.	1.8	5
123	Antidiabetic, Chemical, and Physical Properties of Organic Vanadates as Presumed Transition-State Inhibitors for Phosphatases. Journal of Organic Chemistry, 2015, 80, 11899-11915.	3.2	122
124	Partial Saturation of Menaquinone in <i>Mycobacterium tuberculosis</i> : Function and Essentiality of a Novel Reductase, MenJ. ACS Central Science, 2015, 1, 292-302.	11.3	71
125	Solution Radioactivated by Hadron Radiation Can Increase Sister Chromatid Exchanges. PLoS ONE, 2015, 10, e0144619.	2.5	2
126	Differential Radiosensitivity Phenotypes of DNA-PKcs Mutations Affecting NHEJ and HRR Systems following Irradiation with Gamma-Rays or Very Low Fluences of Alpha Particles. PLoS ONE, 2014, 9, e93579.	2.5	13

#	Article	IF	CITATIONS
127	INTERACTION OF DECAVANADATE WITH INTERFACES AND BIOLOGICAL MODEL MEMBRANE SYSTEMS: CHARACTERIZATION OF SOFT OXOMETALATE SYSTEMS. Journal of Molecular and Engineering Materials, 2014, 02, 1440007.	1.8	21
128	Natural and glucosyl flavonoids inhibit poly(ADP-ribose) polymerase activity and induce synthetic lethality in BRCA mutant cells. Oncology Reports, 2014, 31, 551-556.	2.6	55
129	Modern Coordination Chemistry 100 Years after Werner. European Journal of Inorganic Chemistry, 2014, 2014, 4413-4416.	2.0	1
130	Electron-Transfer Rate Enhancements in Nanosized Waterpools. European Journal of Inorganic Chemistry, 2014, 2014, 4537-4540.	2.0	9
131	Guanylurea metformium double salt of decavanadate, (HGU+)4(HMet+)2(V10O286â^')·2H2O. Inorganica Chimica Acta, 2014, 420, 85-91.	2.4	22
132	Effects of vanadium (III, IV, V)-chlorodipicolinate on glycolysis and antioxidant status in the liver of STZ-induced diabetic rats. Journal of Inorganic Biochemistry, 2014, 136, 47-56.	3.5	55
133	Role of LET and chromatin structure on chromosomal inversion in CHO10B2 cells. Genome Integrity, 2014, 5, 1.	1.0	4
134	Correlation of Insulinâ€Enhancing Properties of Vanadiumâ€Dipicolinate Complexes in Model Membrane Systems: Phospholipid Langmuir Monolayers and AOT Reverse Micelles. Chemistry - A European Journal, 2014, 20, 5149-5159.	3.3	31
135	Spectroscopic Characterization of L-ascorbic Acid-induced Reduction of Vanadium(V) Dipicolinates: Formation of Vanadium(III) and Vanadium(IV) Complexes from Vanadium(V) Dipicolinate Derivatives. Inorganica Chimica Acta, 2014, 420, 112-119.	2.4	19
136	Novel Insights into the Mechanism of Inhibition of MmpL3, a Target of Multiple Pharmacophores in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2014, 58, 6413-6423.	3.2	174
137	Interaction of a Biguanide Compound with Membrane Model Interface Systems: Probing the Properties of Antimalaria and Antidiabetic Compounds. Langmuir, 2014, 30, 8697-8706.	3.5	23
138	Structural and redox requirements for the action of anti-diabetic vanadium compounds. Dalton Transactions, 2014, 43, 6965-6972.	3.3	78
139	Trigonal Bipyramidal or Square Pyramidal Coordination Geometry? Investigating the Most Potent Geometry for Vanadium Phosphatase Inhibitors. European Journal of Inorganic Chemistry, 2014, 2014, 4450-4468.	2.0	93
140	Monoglucosyl-rutin as a potential radioprotector in mammalian cells. Molecular Medicine Reports, 2014, 10, 10-14.	2.4	27
141	Vanadium in inorganic chemistry: excerpts from the 8th International Vanadium Symposium. Dalton Transactions, 2013, 42, 11744.	3.3	13
142	Effect of ancillary ligand on electronic structure as probed by 51V solid-state NMR spectroscopy for vanadium–o-dioxolene complexes. CrystEngComm, 2013, 15, 8776.	2.6	17
143	Preface for the Forum on Metals in Medicine and Health: New Opportunities and Approaches to Improving Health. Inorganic Chemistry, 2013, 52, 12181-12183.	4.0	10
144	Coordination chemistry may explain pharmacokinetics and clinical response of vanadyl sulfate in type 2 diabetic patients. Metallomics, 2013, 5, 1491.	2.4	55

#	Article	IF	CITATIONS
145	Raft localization of Type I Fcε receptor and degranulation of RBL-2H3 cells exposed to decavanadate, a structural model for V2O5. Dalton Transactions, 2013, 42, 11912.	3.3	26
146	Stabilization of a vanadium(<scp>v</scp>)–catechol complex by compartmentalization and reduced solvation inside reverse micelles. New Journal of Chemistry, 2013, 37, 75-81.	2.8	13
147	Cation exchange, solvent free synthesis and packing patterns of quinolinium nickel(II) dipicolinates. Inorganica Chimica Acta, 2013, 408, 204-208.	2.4	11
148	Metal Speciation in Health and Medicine Represented by Iron and Vanadium. Inorganic Chemistry, 2013, 52, 12262-12275.	4.0	128
149	Direct DNA and PNA probe binding to telomeric regions without classical in situ hybridization. Molecular Cytogenetics, 2013, 6, 42.	0.9	18
150	Counterion Affects Interaction with Interfaces: The Antidiabetic Drugs Metformin and Decavanadate. European Journal of Inorganic Chemistry, 2013, 2013, 1859-1868.	2.0	46
151	The anti-diabetic bis(maltolato)oxovanadium(iv) decreases lipid order while increasing insulin receptor localization in membrane microdomains. Dalton Transactions, 2012, 41, 6419.	3.3	49
152	Solid-to-Solid Oxidation of a Vanadium(IV) to a Vanadium(V) Compound: Chemisty of a Sulfur-Containing Siderophore. Inorganic Chemistry, 2012, 51, 9144-9146.	4.0	12
153	Switching Off Electron Transfer Reactions in Confined Media: Reduction of [Co(dipic)2]â^' and [Co(edta)]â^' by Hexacyanoferrate(II). Inorganic Chemistry, 2012, 51, 2757-2765.	4.0	14
154	Correlating Proton Transfer Dynamics To Probe Location in Confined Environments. Journal of the American Chemical Society, 2012, 134, 11904-11907.	13.7	53
155	Redox Activity in a Vanadium(V)– <i>o</i> â€Đioxolene Complex Is Modulated by Protonation State As Indicated by ⁵¹ V Solid‣tate NMR Spectroscopy and Density Functional Theory. European Journal of Inorganic Chemistry, 2012, 2012, 4644-4651.	2.0	9
156	The Conundrum of pH in Water Nanodroplets: Sensing pH in Reverse Micelle Water Pools. Accounts of Chemical Research, 2012, 45, 1637-1645.	15.6	77
157	Insulin Receptors and Downstream Substrates Associate with Membrane Microdomains after Treatment with Insulin or Chromium(III) Picolinate. Cell Biochemistry and Biophysics, 2012, 62, 441-450.	1.8	12
158	Genomic Instability and Telomere Fusion of Canine Osteosarcoma Cells. PLoS ONE, 2012, 7, e43355.	2.5	29
159	Coexisting Aggregates in Mixed Aerosol OT and Cholesterol Microemulsions. Langmuir, 2011, 27, 948-954.	3.5	30
160	Acidification of Reverse Micellar Nanodroplets by Atmospheric Pressure CO ₂ . Journal of the American Chemical Society, 2011, 133, 7205-7214.	13.7	22
161	Characterization of Noninnocent Metal Complexes Using Solid-State NMR Spectroscopy: <i>>o</i> -Dioxolene Vanadium Complexes. Inorganic Chemistry, 2011, 50, 9794-9803.	4.0	43
162	Quantification of foscarnet with chromogenic and fluorogenic chemosensors: indicator displacement assays based on metal ion coordination with a catechol ligand moiety. New Journal of Chemistry, 2011, 35, 2877.	2.8	11

#	Article	IF	CITATIONS
163	Antidiabetic vanadium compound and membrane interfaces: interface-facilitated metal complex hydrolysis. Journal of Biological Inorganic Chemistry, 2011, 16, 961-972.	2.6	54
164	Gel Formulation Containing Mixed Surfactant and Lipids Associating with Carboplatin. Chemistry and Biodiversity, 2011, 8, 2195-2210.	2.1	1
165	Layered Structure of Roomâ€Temperature Ionic Liquids in Microemulsions by Multinuclear NMR Spectroscopic Studies. Chemistry - A European Journal, 2011, 17, 6837-6846.	3.3	38
166	Reduced Molybenumâ€Oxideâ€Based Core–Shell Hybrids: "Blue―Electrons Are Delocalized on the Shell. Chemistry - A European Journal, 2011, 17, 6635-6642.	3.3	24
167	How environment affects drug activity: Localization, compartmentalization and reactions of a vanadium insulin-enhancing compound, dipicolinatooxovanadium(V). Coordination Chemistry Reviews, 2011, 255, 2178-2192.	18.8	106
168	Anti-diabetic effects of a series of vanadium dipicolinate complexes in rats with streptozotocin-induced diabetes. Coordination Chemistry Reviews, 2011, 255, 2258-2269.	18.8	198
169	Effect of Micellar and Reverse Micellar Interface on Solute Location: 2,6-Pyridinedicarboxylate in CTAB Micelles and CTAB and AOT Reverse Micelles. Langmuir, 2010, 26, 13153-13161.	3.5	53
170	Effects of metal compounds with distinct physicochemical properties on iron homeostasis and antibacterial activity in the lungs: chromium and vanadium. Inhalation Toxicology, 2010, 22, 169-178.	1.6	31
171	Is Vanadate Reduced by Thiols under Biological Conditions? Changing the Redox Potential of V(V)/V(IV) by Complexation in Aqueous Solution. Inorganic Chemistry, 2010, 49, 4245-4256.	4.0	104
172	Electron transfer in non-oxovanadium(IV) and (V) complexes: Kinetic studies of an amavadin model. Pure and Applied Chemistry, 2009, 81, 1241-1249.	1.9	7
173	Signatures of DNA double strand breaks produced in irradiated G1 and G2 cells persist into mitosis. Journal of Cellular Physiology, 2009, 219, 760-765.	4.1	24
174	Anti-diabetic effects of vanadium(III, IV, V)–chlorodipicolinate complexes in streptozotocin-induced diabetic rats. BioMetals, 2009, 22, 895-905.	4.1	57
175	Decavanadate (V10O286-) and oxovanadates: Oxometalates with many biological activities. Journal of Inorganic Biochemistry, 2009, 103, 536-546.	3.5	232
176	Anti-diabetic effects of sodium 4-amino-2,6-dipicolinatodioxovanadium(V) dihydrate in streptozotocin-induced diabetic rats. Journal of Inorganic Biochemistry, 2009, 103, 585-589.	3.5	41
177	Chloro-substituted dipicolinate vanadium complexes: Synthesis, solution, solid-state, and insulin-enhancing properties. Journal of Inorganic Biochemistry, 2009, 103, 575-584.	3.5	72
178	Complexation of bisphosphonates with ytterbium(III): Application of phosphate and ATP detection assay based on Yb3+–pyrocatechol violet. Journal of Inorganic Biochemistry, 2009, 103, 1652-1657.	3.5	17
179	Effects of decavanadate and insulin enhancing vanadium compounds on glucose uptake in isolated rat adipocytes. Journal of Inorganic Biochemistry, 2009, 103, 1687-1692.	3.5	86
180	Deprotonation of Î ² -cyclodextrin in alkaline solutions. Carbohydrate Research, 2009, 344, 250-254.	2.3	64

#	Article	IF	CITATIONS
181	What Is Inside a Nonionic Reverse Micelle? Probing the Interior of Igepal Reverse Micelles Using Decavanadate. Langmuir, 2009, 25, 5496-5503.	3.5	37
182	51V solid-state NMR and density functional theory studies of eight-coordinate non-oxo vanadium complexes: oxidized amavadin. Dalton Transactions, 2009, , 3262-9.	3.3	8
183	Impact of confinement and interfaces on coordination chemistry: Using oxovanadate reactions and proton transfer reactions as probes in reverse micelles. Coordination Chemistry Reviews, 2009, 253, 2178-2185.	18.8	49
184	VARIATIONS IN RADIOSENSITIVITY AMONG INDIVIDUALS: A POTENTIAL IMPACT ON RISK ASSESSMENT?. Health Physics, 2009, 97, 470-480.	0.5	28
185	Impairment of ascorbic acid's anti-oxidant properties in confined media: Inter and intramolecular reactions with air and vanadate at acidic pH. Journal of Inorganic Biochemistry, 2008, 102, 1334-1347.	3.5	22
186	Anti-diabetic Effects of Cesium Aqua (N,N′-ethylene(salicylideneiminato)-5-sulfonato) Oxovanadium (IV) Dihydrate in Streptozotocin-induced Diabetic Rats. Biological Trace Element Research, 2008, 121, 226-232.	3.5	25
187	Metal complexation chemistry used for phosphate and nucleotide determination: an investigation of the Yb3+–pyrocatechol violet sensor. Journal of Biological Inorganic Chemistry, 2008, 13, 1291-1299.	2.6	13
188	Effects of Vanadium ontaining Compounds on Membrane Lipids and on Microdomains Used in Receptorâ€Mediated Signaling. Chemistry and Biodiversity, 2008, 5, 1558-1570.	2.1	32
189	Inhibition of protein tyrosine phosphatase 1B and alkaline phosphatase by bis(maltolato)oxovanadium (IV). Journal of Inorganic Biochemistry, 2008, 102, 1846-1853.	3.5	83
190	Comparison of the induction and disappearance of DNA double strand breaks and Î ³ -H2AX foci after irradiation of chromosomes in G1-phase or in condensed metaphase cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2008, 639, 108-112.	1.0	40
191	Penetration of Negatively Charged Lipid Interfaces by the Doubly Deprotonated Dipicolinate. Journal of Organic Chemistry, 2008, 73, 9633-9640.	3.2	32
192	¹ H NMR Studies of Aerosol-OT Reverse Micelles with Alkali and Magnesium Counterions: Preparation and Analysis of MAOTs. Langmuir, 2008, 24, 6027-6035.	3.5	47
193	Do Probe Molecules Influence Water in Confinement?. Journal of Physical Chemistry B, 2008, 112, 10158-10164.	2.6	35
194	Sarcoplasmic Reticulum Calcium ATPase Is Inhibited by Organic Vanadium Coordination Compounds: Pyridine-2,6-dicarboxylatodioxovanadium(V), BMOV, and an Amavadine Analogue. Inorganic Chemistry, 2008, 47, 5677-5684.	4.0	50
195	V 51 solid-state NMR and density functional theory studies of vanadium environments in V(V)O2 dipicolinic acid complexes. Journal of Chemical Physics, 2008, 128, 052317.	3.0	32
196	Pulmonary Immunotoxic Potentials of Metals Are Governed by Select Physicochemical Properties: Vanadium Agents. Journal of Immunotoxicology, 2007, 4, 49-60.	1.7	27
197	Do Vanadium Compounds Drive Reorganization of the Plasma Membrane and Activation of Insulin Receptors with Lipid Rafts?. ACS Symposium Series, 2007, , 121-134.	0.5	7
198	A defect in DNA double strand break processing in cells from unaffected parents of retinoblastoma patients and other apparently normal humans. DNA Repair, 2007, 6, 818-829.	2.8	33

#	Article	IF	CITATIONS
199	Metal-Carbohydrate Complexes in Solution. Progress in Inorganic Chemistry, 2007, , 837-945.	3.0	55
200	4-Amino- and 4-Nitrodipicolinatovanadium(V) Complexes and Their Hydroxylamido Derivatives: Synthesis, Aqueous, and Solid-State Properties. Inorganic Chemistry, 2007, 46, 9827-9840.	4.0	32
201	Simple Oxovanadates as Multiparameter Probes of Reverse Micelles. Langmuir, 2007, 23, 6510-6518.	3.5	31
202	Investigating the Vanadium Environments in Hydroxylamido V(V) Dipicolinate Complexes Using ⁵¹ V NMR Spectroscopy and Density Functional Theory. Inorganic Chemistry, 2007, 46, 9285-9293.	4.0	55
203	Comparing Administration Route in Rats with Streptozocin-Induced Diabetes and Inhibition of Myoblast Growth of Vanadium [V(III), V(IV), and V(V)] Dipicolinic Acid Complexes. ACS Symposium Series, 2007, , 93-109.	0.5	8
204	Electron Spin Lattice Relaxation of V(IV) Complexes in Glassy Solutions between 15 and 70 K. ACS Symposium Series, 2007, , 364-375.	0.5	8
205	Chelation of Vanadium(V) by Difluoromethylene Bisphosphonate, a Structural Analogue of Pyrophosphate. Inorganic Chemistry, 2007, 46, 6723-6732.	4.0	12
206	Pulmonary Immunotoxic Potentials of Metals Are Governed by Select Physicochemical Properties: Chromium Agents. Journal of Immunotoxicology, 2006, 3, 69-81.	1.7	18
207	Molecular Probe Location in Reverse Micelles Determined by NMR Dipolar Interactions. Journal of the American Chemical Society, 2006, 128, 4437-4445.	13.7	96
208	Self-exchange electron transfer in high oxidation state non-oxo metal complexes: amavadin. Chemical Communications, 2006, , 4641.	4.1	13
209	When Is Water Not Water? Exploring Water Confined in Large Reverse Micelles Using a Highly Charged Inorganic Molecular Probe. Journal of the American Chemical Society, 2006, 128, 12758-12765.	13.7	181
210	Reduction of Vanadium(V) byl-Ascorbic Acid at Low and Neutral pH:Â Kinetic, Mechanistic, and Spectroscopic Characterization. Inorganic Chemistry, 2006, 45, 1471-1479.	4.0	62
211	Transition State Analogues for Nucleotidyl Transfer Reactions:Â Structure and Stability of Pentavalent Vanadate and Phosphate Ester Dianions. Journal of Physical Chemistry B, 2006, 110, 14988-14999.	2.6	27
212	Oxovanadates: aÂnovel probe forÂstudying lipid–water interfaces. Biomedicine and Pharmacotherapy, 2006, 60, 174-181.	5.6	21
213	Spectrometric and electrochemical investigation of vanadium(V) and vanadium(IV) tartrate complexes in solution. Journal of the Brazilian Chemical Society, 2006, 17, 895-904.	0.6	3
214	Diabetes-altered gene expression in rat skeletal muscle corrected by oral administration of vanadyl sulfate. Physiological Genomics, 2006, 26, 192-201.	2.3	42
215	The permeability and cytotoxicity of insulin-mimetic vanadium (III,IV,V)-dipicolinate complexes. Journal of Inorganic Biochemistry, 2006, 100, 80-87.	3.5	66
216	Fifteen Years of Dancing with Vanadium. ChemInform, 2006, 37, no.	0.0	0

#	Article	IF	CITATIONS
217	Levels of Î ³ -H2AX Foci after Low-Dose-Rate Irradiation Reveal a DNA DSB Rejoining Defect in Cells from Human <i>ATM</i> Heterozygotes in Two AT Families and in Another Apparently Normal Individual. Radiation Research, 2006, 166, 443-453.	1.5	68
218	γ-H2AX Foci after Low-Dose-Rate Irradiation RevealAtmHaploinsufficiency in Mice. Radiation Research, 2006, 166, 47-54.	1.5	34
219	Evidence of two-step deprotonation of d-mannitol in aqueous solution. Carbohydrate Research, 2005, 340, 1553-1556.	2.3	15
220	Interaction of pyridine-2,5-dicarboxylic acid with heavy metal ions in aqueous solutions. Heteroatom Chemistry, 2005, 16, 285-291.	0.7	14
221	Fifteen years of dancing with vanadium. Pure and Applied Chemistry, 2005, 77, 1497-1527.	1.9	85
222	Interaction of Dipicolinatodioxovanadium(V) with Polyatomic Cations and Surfaces in Reverse Micelles. Langmuir, 2005, 21, 6250-6258.	3.5	30
223	Aqueous Chemistry of the VanadiumIII(VIII) and the VIIIâ dDipicolinate Systems and a Comparison of the Effect of Three Oxidation States of Vanadium Compounds on Diabetic Hyperglycemia in Rats. Inorganic Chemistry, 2005, 44, 5416-5427.	4.0	142
224	The Permeability and Cytotoxicity of Insulin-Mimetic Vanadium Compounds. Pharmaceutical Research, 2004, 21, 1026-1033.	3.5	91
225	The Chemistry and Biochemistry of Vanadium and the Biological Activities Exerted by Vanadium Compounds. ChemInform, 2004, 35, no.	0.0	4
226	Inhibition of yeast growth by molybdenum-hydroxylamido complexes correlates with their presence in media at differing pH values. Journal of Inorganic Biochemistry, 2004, 98, 1837-1850.	3.5	16
227	Cu(II) complex formation with xylitol in alkaline solutions. Carbohydrate Research, 2004, 339, 599-605.	2.3	32
228	The Chemistry and Biochemistry of Vanadium and the Biological Activities Exerted by Vanadium Compounds. Chemical Reviews, 2004, 104, 849-902.	47.7	1,238
229	Interaction of pyridine- and 4-hydroxypyridine-2,6-dicarboxylic acids with heavy metal ions in aqueous solutions. Heteroatom Chemistry, 2003, 14, 625-632.	0.7	53
230	Membrane transport of vanadium compounds and the interaction with the erythrocyte membrane. Coordination Chemistry Reviews, 2003, 237, 103-111.	18.8	97
231	(4-Hydroxypyridine-2,6-dicarboxylato)oxovanadate(V)—a new insulin-like compound: chemistry, effects on myoblast and yeast cell growth and effects on hyperglycemia in rats with STZ-induced diabetes. Coordination Chemistry Reviews, 2003, 237, 13-22.	18.8	77
232	Vanadium(IV) and vanadium(V) complexes of dipicolinic acid and derivatives. Synthesis, X-ray structure, solution state properties. Inorganica Chimica Acta, 2003, 356, 365-378.	2.4	88
233	Vanadium(IV/V) speciation of pyridine-2,6-dicarboxylic acid and 4-hydroxy-pyridine-2,6-dicarboxylic acid complexes: potentiometry, EPR spectroscopy and comparison across oxidation states. Journal of Inorganic Biochemistry, 2003, 95, 1-13.	3.5	53
234	Applications of Paramagnetic NMR Spectroscopy for Monitoring Transition Metal Complex Stoichiometry and Speciation. ACS Symposium Series, 2003, , 304-326.	0.5	7

#	Article	IF	CITATIONS
235	Tetravanadate, Decavanadate, Keggin and Dawson Oxotungstates Inhibit Growth of S. cerevisiae. Nanostructure Science and Technology, 2002, , 181-195.	0.1	2
236	4-Hydroxypyridine-2,6-dicarboxylatodioxovanadate(V) Complexes:Â Solid State and Aqueous Chemistry. Inorganic Chemistry, 2002, 41, 6322-6331.	4.0	67
237	Inelastic Neutron Scattering on Three Mixed-Valence Dodecanuclear Polyoxovanadate Clustersâ€. Inorganic Chemistry, 2002, 41, 5675-5685.	4.0	49
238	Cobalt(II) and Cobalt(III) Dipicolinate Complexes:Â Solid State, Solution, and in Vivo Insulin-like Properties. Inorganic Chemistry, 2002, 41, 4859-4871.	4.0	151
239	Rational synthesis and X-ray structure of [Mnll4(H2O)2(AsVW9O34)2]10â^ from [Aslll4W40O140]28â^', MnO4â^' and Mn2+. Polyhedron, 2002, 21, 959-962.	2.2	13
240	Bis(acetylamido)oxovanadium(IV) complexes: solid state and solution studies. Dalton Transactions RSC, 2001, , 3337-3345.	2.3	37
241	Methylation of neutral pseudotetrahedral zinc thiolate complexes: model reactions for alkyl group transfer to sulfur by zinc-containing enzymes. Journal of Biological Inorganic Chemistry, 2001, 6, 82-90.	2.6	51
242	Effect of vanadium(IV) compounds in the treatment of diabetes: in vivo and in vitro studies with vanadyl sulfate and bis(maltolato)oxovandium(IV). Journal of Inorganic Biochemistry, 2001, 85, 33-42.	3.5	197
243	summarizes the presentation given at the symposium â€~Biological Aspects of Vanadium Chemistry — Chemistry, Biochemistry and Therapeutic Applications of Vanadium Compounds' and recently communicated in original research articles. The original research articles describing the experimental details of this work are given in Refs: [1–5].1. Iournal of Inorganic Biochemistry. 2000. 80.	3.5	240
244	Aqueous Chemistry of Ammonium (Dipicolinato)oxovanadate(V):Â The First Organic Vanadium(V) Insulin-Mimetic Compound. Inorganic Chemistry, 2000, 39, 4409-4416.	4.0	153
245	Chemistry and Insulin-Mimetic Properties of Bis(acetylacetonate)oxovanadium(IV) and Derivatives1. Inorganic Chemistry, 2000, 39, 406-416.	4.0	180
246	Effects of vanadium complexes with organic ligands on glucose metabolism: a comparison study in diabetic rats. British Journal of Pharmacology, 1999, 126, 467-477.	5.4	184
247	Solution Characterization of Vanadium(V) and -(IV) N-(Phosphonomethyl)iminodiacetate Complexes: Direct Observation of One Enantiomer Converting to the Other in an Equilibrium Mixture1. Inorganic Chemistry, 1999, 38, 3275-3282.	4.0	15
248	Vanadium(V) Complexes of Polydentate Amino Alcohols:  Fine-Tuning Complex Properties. Journal of the American Chemical Society, 1998, 120, 8069-8078.	13.7	38
249	Speciation in Vanadium Bioinorganic Systems. 5. Interactions between Vanadate, Uridine, and ImidazoleAn Aqueous Potentiometric,51V,17O, and13C NMR Study. Inorganic Chemistry, 1998, 37, 6153-6160.	4.0	28
250	Dinuclear Oxovanadium(IV)N-(Phosphonomethyl)iminodiacetate Complexes:Â Na4[V2O2{(O)2P(O)CH2N(CH2COO)2}2]·10H2O and Na8[V2O2{(O)2P(O)CH2N(CH2COO)2}2]2·16H2O1. Inorganic Chemistry, 1998, 37, 6645-6655.	4.0	30
251	Stepwise Cluster Assembly Using VO2(acac) as a Precursor:Âcis-[VO(OCH(CH3)2)(acac)2], [V2O2(μ-OCH3)2(acac)2(OCH3)2], [V3O3{μ,μ-(OCH2)3CCH3}2(acac)2(OC2H5)], and [V4O4(μ-O)2(μ-OCH3)2(μ3-OCH3)2(acac)2(OCH3)2]·2CH3CN1. Inorganic Chemistry, 1998, 37, 5439-545	4.0 1.	65
252	The Chemistry of Vanadium in Aqueous and Nonaqueous Solution. ACS Symposium Series, 1998, , 2-29.	0.5	49

15

#	Article	IF	CITATIONS
253	Peroxo, Hydroxylamido, and Acac Derived Vanadium Complexes: Chemistry, Biochemistry, and Insulin-Mimetic Action of Selected Vanadium Compounds. ACS Symposium Series, 1998, , 82-103.	0.5	14
254	Insulin-like Effects of Vanadium; Reviewing In Vivo and In Vitro Studies and Mechanisms of Action. ACS Symposium Series, 1998, , 308-315.	0.5	9
255	Vanadium oxoanions and cAMP-dependent protein kinase: an anti-substrate inhibitor. Biochemical Journal, 1997, 321, 333-339.	3.7	20
256	Syntheses, X-ray Structures, and Solution Properties of [V4O4{(OCH2)3CCH3}3(OC2H5)3] and [V4O4{(OCH2)3CCH3}2(OCH3)6]:Â Examples of New Ligand Coordination Modes. Inorganic Chemistry, 1997, 36, 1038-1047.	4.0	39
257	Speciation in Vanadium Bioinorganic Systems. 4. Interactions between Vanadate, Adenosine, and ImidazoleAn Aqueous Potentiometric and51V NMR Study. Journal of the American Chemical Society, 1997, 119, 7005-7012.	13.7	43
258	Six-co-ordinated vanadium-(IV) and -(V) complexes of benzimidazole and pyridyl containing ligands. Journal of the Chemical Society Dalton Transactions, 1997, , 2799-2812.	1.1	70
259	Synthesis, Structure, and Biological Activity of a New Insulinomimetic Peroxovanadium Compound:Â Bisperoxovanadium Imidazole Monoanion. Journal of the American Chemical Society, 1997, 119, 5447-5448.	13.7	108
260	Insulin-Mimetic Action of Vanadium Compounds on Osteoblast-like Cells in Culture. Archives of Biochemistry and Biophysics, 1997, 338, 7-14.	3.0	68
261	Vanadium(V) Hydroxylamido Complexes:Â Solid State and Solution Properties1. Journal of the American Chemical Society, 1997, 119, 8901-8915.	13.7	105
262	Solution and Solid State Properties of [N-(2-Hydroxyethyl)iminodiacetato]vanadium(IV), -(V), and -(IV/V) Complexes1. Inorganic Chemistry, 1997, 36, 1657-1668.	4.0	105
263	Factors Affecting Solution Properties of Vanadium(V) Compounds:  X-ray Structure of β-cis-NH4[VO2(EDDA)]1. Inorganic Chemistry, 1996, 35, 3599-3606.	4.0	46
264	Four- and Five-Coordinate Oxovanadium(V) Alkoxides:Â Do Steric Effects or Electronic Properties Dictate the Geometry?. Inorganic Chemistry, 1996, 35, 6485-6494.	4.0	17
265	Evidence for the Distinct Vanadyl(+4)-Dependent Activating System for Manifesting Insulin-Like Effectsâ€. Biochemistry, 1996, 35, 8314-8318.	2.5	99
266	Organic Vanadium Compounds - Transition State Analogy with Organic Phosphorus Compounds. Phosphorus, Sulfur and Silicon and the Related Elements, 1996, 109, 245-248.	1.6	2
267	Application of NMR Spectroscopy to Studies of Aqueous Coordination Chemistry of Vanadium(V) Complexes. Advances in Chemistry Series, 1996, , 303-328.	0.6	11
268	Vanadium chemistry and biochemistry of relevance for use of vanadium compounds as antidiabetic agents. Molecular and Cellular Biochemistry, 1995, 153, 17-24.	3.1	84
269	Structure of the Dimeric Ethylene Glycol-Vanadate Complex and Other 1,2-Diol-Vanadate Complexes in Aqueous Solution: Vanadate-Derived Transition-State Analog Complexes of Phosphotransferases. Journal of the American Chemical Society, 1995, 117, 6015-6026.	13.7	46
270	A Slow Exchanging Vanadium(V) Peptide Complex: Vanadium(V)-Glycine-Tyrosine. Inorganic Chemistry, 1995, 34, 2524-2534.	4.0	66

#	Article	IF	CITATIONS
271	Phytate Metabolism in Bean Seedlings duringPost-Germinative Growth. Journal of Plant Physiology, 1995, 145, 101-107.	3.5	9
272	Vanadium chemistry and biochemistry of relevance for use of vanadium compounds as antidiabetic agents. , 1995, , 17-24.		4
273	The effect of vanadate on growth and phospholipid levels in the root and hypocotyl of bean seedlings (Phaseolus vulgaris L.). , 1995, , 181-187.		1
274	Aqueous Chemistry of Labile Oxovanadates: Relevance to Biological Studies. Comments on Inorganic Chemistry, 1994, 16, 1-33.	5.2	112
275	Enzyme Interactions with Labile Oxovanadates and Other Polyoxometalates. Comments on Inorganic Chemistry, 1994, 16, 35-76.	5.2	80
276	Characterization of Vanadium(V) Complexes in Aqueous Solutions: Ethanolamine- and Glycine-Derived Complexes. Journal of the American Chemical Society, 1994, 116, 1305-1315.	13.7	115
277	X-ray Structure of (NH4)6(Gly-Gly)2V10O28.cntdot.4H2O: Model Studies for Polyoxometalate-Protein Interactions. Inorganic Chemistry, 1994, 33, 5586-5590.	4.0	141
278	Oxovanadium(V) Alkoxide Derivatives of 1,2-Diols: Synthesis and Solid-State 51V NMR Characterization. Inorganic Chemistry, 1994, 33, 2427-2438.	4.0	65
279	Interactions of Oxovanadates and Selected Oxomolybdates with Proteins. Topics in Molecular Organization and Engineering, 1994, , 401-408.	0.1	0
280	31P NMR Examination of Phosphorus Metabolites in the Aqueous, Acidic, and Organic Extracts of Phaseolus vulgaris Seeds. Analytical Biochemistry, 1993, 209, 85-94.	2.4	21
281	Interactions of oxovanadates and selected oxomolybdates with proteins. Molecular Engineering, 1993, 3, 277-284.	0.2	7
282	Vanadium(V)-protein model studies: solid-state and solution structure. Journal of the American Chemical Society, 1993, 115, 6769-6776.	13.7	124
283	NADV: a new cofactor for alcohol dehydrogenase from Thermoanaerobium brockii. Journal of Organic Chemistry, 1993, 58, 2244-2252.	3.2	23
284	Structure and solution properties of a dimeric tetrahedral vanadium(V) chloride alkoxide complex. Inorganic Chemistry, 1993, 32, 247-248.	4.0	51
285	Synthesis and reactivity of oxovanadium(V) trialkoxides of bulky and chiral alcohols. Journal of the American Chemical Society, 1992, 114, 4543-4550.	13.7	79
286	(-)-Cryptaustoline: its synthesis, revision of absolute stereochemistry, and mechanism of inversion of stereochemistry. Journal of the American Chemical Society, 1992, 114, 8483-8489.	13.7	44
287	Chemically induced modification of cofactor specificity of glucose-6-phosphate dehydrogenase. Journal of the American Chemical Society, 1992, 114, 4926-4928.	13.7	45
288	Interaction of rabbit muscle aldolase at high ionic strengths with vanadate and other oxoanions. Biochemistry, 1992, 31, 6812-6821.	2.5	51

#	Article	IF	CITATIONS
289	Interaction of porcine uterine fluid purple acid phosphatase with vanadate and vanadyl cation. Biochemistry, 1992, 31, 11731-11739.	2.5	46
290	Oxovanadium(V) 1,3-propanediolate chloride complexes: tetrameric clusters. Inorganic Chemistry, 1992, 31, 4939-4949.	4.0	56
291	Nonreductive interaction of vanadate with an enzyme containing a thiol group in the active site: glycerol-3-phosphate dehydrogenase. Biochemistry, 1991, 30, 6734-6741.	2.5	42
292	Vanadate interactions with bovine copper,zinc-superoxide dismutase as probed by vanadium-51 NMR spectroscopy. Journal of the American Chemical Society, 1991, 113, 7872-7881.	13.7	35
293	Cyclic vanadium(V) alkoxide. An analog of the ribonuclease inhibitors. Journal of the American Chemical Society, 1991, 113, 265-269.	13.7	97
294	Structural and kinetic characterization of simple complexes as models for vanadate-protein interactions. Journal of the American Chemical Society, 1991, 113, 3728-3736.	13.7	72
295	Substituent effects in organic vanadate esters in imidazole-buffered aqueous solutions. Journal of Organic Chemistry, 1991, 56, 1266-1274.	3.2	37
296	NMR, CD and MCD Studies of Vanadate–Nucleoside Complexes Acta Chemica Scandinavica, 1991, 45, 456-462.	0.7	22
297	A kinetic method for determination of free vanadium(IV) and (V) at trace level concentrations. Analytical Biochemistry, 1990, 188, 53-64.	2.4	35
298	Vanadate dimer and tetramer both inhibit glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides. Biochemistry, 1990, 29, 6698-6706.	2.5	44
299	Vanadate tetramer as the inhibiting species in enzyme reactions in vitro and in vivo. Journal of the American Chemical Society, 1990, 112, 427-432.	13.7	77
300	Application of time-resolved vanadium-51 2D NMR for quantitation of kinetic exchange pathways between vanadate monomer, dimer, tetramer, and pentamer. Journal of the American Chemical Society, 1990, 112, 2901-2908.	13.7	125
301	Interaction of trace levels of vanadium(IV) and vanadium(V) in biological systems. Journal of the American Chemical Society, 1989, 111, 7597-7607.	13.7	179
302	Vanadate monomers and dimers both inhibit the human prostatic acid phosphatase. Biochemical and Biophysical Research Communications, 1989, 165, 246-250.	2.1	50
303	Reversible and in situ formation of organic arsenates and vanadates as organic phosphate mimics in enzymatic reactions: mechanistic investigation of aldol reactions and synthetic applications. Journal of Organic Chemistry, 1989, 54, 70-77.	3.2	94
304	Synthesis of 3-Deoxy-D-manno-2-octulosonate-8-phosphate (KDO-8-P) fromD-Arabinose: Generation of D-Arabinose-5-Phosphate using Hexokinase. Tetrahedron Letters, 1988, 29, 427-430.	1.4	79
305	Spontaneous and reversible interaction of vanadium(V) oxyanions with amine derivatives. Inorganic Chemistry, 1988, 27, 1797-1806.	4.0	72
306	Determination of enantiomeric purity of polar substrates with chiral lanthanide NMR shift reagents in polar solvents. Journal of Organic Chemistry, 1987, 52, 2273-2276.	3.2	54

#	Article	IF	CITATIONS
307	[25] Enzymatic regeneration of adenosine 5′-triphosphate: Acetyl phosphate, phosphoenolpyruvate, methoxycarbonyl phosphate, dihydroxyacetone phosphate, 5-phospho-î±-d-ribosyl pyrophosphate, uridine-5′-diphosphoglucose. Methods in Enzymology, 1987, 136, 263-280.	1.0	52
308	Clycerol kinase: substrate specificity. Journal of the American Chemical Society, 1985, 107, 7008-7018.	13.7	63
309	Glycerol kinase: synthesis of dihydroxyacetone phosphate, sn-glycerol-3-phosphate, and chiral analogs. Journal of the American Chemical Society, 1985, 107, 7019-7027.	13.7	100
310	Practical enzymic synthesis of adenosine 5'-0-(3-thiotriphosphate) (ATPgammaS). Journal of Organic Chemistry, 1984, 49, 1360-1364.	3.2	16
311	A convenient synthesis of disodium acetyl phosphate for use in in situ ATP cofactor regeneration. Journal of Organic Chemistry, 1983, 48, 3130-3132.	3.2	74
312	Tetracoordinate planar carbon: a singlet biradical. Journal of the American Chemical Society, 1980, 102, 7152-7154.	13.7	28