
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1336669/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phenotypic Plasticity: What Has DNA Methylation Got to Do with It?. Insects, 2022, 13, 110.	2.2	27
2	The <i>Nasonia</i> pair-rule gene regulatory network retains its function over 300 million years of evolution. Development (Cambridge), 2022, 149, .	2.5	3
3	Noggin proteins are multifunctional extracellular regulators of cell signalling. Genetics, 2022, , .	2.9	1
4	Genomics Reveals Widespread Ecological Speciation in Flightless Insects. Systematic Biology, 2021, 70, 863-876.	5.6	18
5	Including Digital Sequence Data in the Nagoya Protocol Can Promote Data Sharing. Trends in Biotechnology, 2021, 39, 116-125.	9.3	30
6	The Developmental Hourglass in the Evolution of Embryogenesis. , 2021, , 111-120.		0
7	Evo-Devo Lessons Learned from Honeybees. , 2021, , 805-816.		1
8	Five animal phyla in glacier ice reveal unprecedented biodiversity in New Zealand's Southern Alps. Scientific Reports, 2021, 11, 3898.	3.3	8
9	Evolution and genomic organization of the insect sHSP gene cluster and coordinate regulation in phenotypic plasticity. Bmc Ecology and Evolution, 2021, 21, 154.	1.6	0
10	Genomic signatures of parallel alpine adaptation in recentlyâ€evolved flightless insects. Molecular Ecology, 2021, 30, 6677-6686.	3.9	6
11	Human liverâ€derived MAIT cells differ from blood MAIT cells in their metabolism and response to TCRâ€independent activation. European Journal of Immunology, 2021, 51, 879-892.	2.9	14
12	Management tools for genetic diversity in an isolated population of the honeybee (Apis mellifera) in New Zealand. Animal Production Science, 2021, , .	1.3	1
13	Drosophila melanogaster and worker honeybees (Apis mellifera) do not require olfaction to be susceptible to honeybee queen mandibular pheromone. Journal of Insect Physiology, 2020, 127, 104154.	2.0	3
14	Genetic Diversity in Invasive Populations of Argentine Stem Weevil Associated with Adaptation to Biocontrol. Insects, 2020, 11, 441.	2.2	13
15	High-Quality Assemblies for Three Invasive Social Wasps from the Vespula Genus. G3: Genes, Genomes, Genetics, 2020, 10, 3479-3488.	1.8	19
16	The potential for a CRISPR gene drive to eradicate or suppress globally invasive social wasps. Scientific Reports, 2020, 10, 12398.	3.3	32
17	Genotyping-by-sequencing of pooled drone DNA for the management of living honeybee (Apis mellifera) queens in commercial beekeeping operations in New Zealand. Apidologie, 2020, 51, 545-556.	2.0	5
18	Rights, interests and expectations: Indigenous perspectives on unrestricted access to genomic data. Nature Reviews Genetics, 2020, 21, 377-384.	16.3	141

#	Article	IF	CITATIONS
19	Genome Architecture Facilitates Phenotypic Plasticity in the Honeybee (Apis mellifera). Molecular Biology and Evolution, 2020, 37, 1964-1978.	8.9	30
20	Transcriptomic characterisation of neuropeptides and their putative cognate G protein-coupled receptors during late embryo and stage-1 juvenile development of the Aotearoa-New Zealand crayfish, Paranephrops zealandicus. General and Comparative Endocrinology, 2020, 292, 113443.	1.8	7
21	Designing and implementing a genetic improvement program in commercial beekeeping operations. Journal of Apicultural Research, 2020, 59, 638-647.	1.5	4
22	Sawfly Genomes Reveal Evolutionary Acquisitions That Fostered the Mega-Radiation of Parasitoid and Eusocial Hymenoptera. Genome Biology and Evolution, 2020, 12, 1099-1188.	2.5	17
23	Opportunities for modern genetic technologies to maintain and enhance Aotearoa New Zealand's bioheritage. New Zealand Journal of Ecology, 2020, 44, .	1.1	4
24	Invasive Insects: Management Methods Explored. Journal of Insect Science, 2019, 19, .	1.5	32
25	Ancestral hymenopteran queen pheromones do not share the broad phylogenetic repressive effects of honeybee queen mandibular pheromone. Journal of Insect Physiology, 2019, 119, 103968.	2.0	6
26	TCR- or Cytokine-Activated CD8+ Mucosal-Associated Invariant T Cells Are Rapid Polyfunctional Effectors That Can Coordinate Immune Responses. Cell Reports, 2019, 28, 3061-3076.e5.	6.4	138
27	Comparative transcriptomic analysis of a wing-dimorphic stonefly reveals candidate wing loss genes. EvoDevo, 2019, 10, 21.	3.2	18
28	The Pacific Biosciences de novo assembled genome dataset from a parthenogenetic New Zealand wild population of the longhorned tick, Haemaphysalis longicornis Neumann, 1901. Data in Brief, 2019, 27, 104602.	1.0	15
29	Ecological gradients drive insect wing loss and speciation: The role of the alpine treeline. Molecular Ecology, 2019, 28, 3141-3150.	3.9	27
30	First complete mitochondrial genome of a Gripopterygid stonefly from the sub-order Antarctoperlaria: Zelandoperla fenestrata. Mitochondrial DNA Part B: Resources, 2019, 4, 886-888.	0.4	2
31	Molecular evolutionary trends and feeding ecology diversification in the Hemiptera, anchored by the milkweed bug genome. Genome Biology, 2019, 20, 64.	8.8	114
32	The complete mitogenome sequence of the agricultural pest, clover root weevil: the key to its own demise?. Mitochondrial DNA Part B: Resources, 2019, 4, 878-879.	0.4	2
33	The <i>torso-like</i> gene functions to maintain the structure of the vitelline membrane in <i>Nasonia vitripennis</i> , implying its co-option into <i>Drosophila</i> axis formation. Biology Open, 2019, 8, .	1.2	7
34	Evolution of the Torso activation cassette, a pathway required for terminal patterning and moulting. Insect Molecular Biology, 2019, 28, 392-408.	2.0	12
35	Hourglass or Twisted Ribbon?. Results and Problems in Cell Differentiation, 2019, 68, 21-29.	0.7	0

The Developmental Hourglass in the Evolution of Embryogenesis. , 2019, , 1-10.

1

#	Article	IF	CITATIONS
37	The potential for the use of gene drives for pest control in New Zealand: a perspective. Journal of the Royal Society of New Zealand, 2018, 48, 225-244.	1.9	66
38	A mechanically strengthened polyacrylamide gel matrix fully compatible with electrophoresis of proteins and nucleic acids. Electrophoresis, 2018, 39, 824-832.	2.4	3
39	Genotyping-by-sequencing supports a genetic basis for wing reduction in an alpine New Zealand stonefly. Scientific Reports, 2018, 8, 16275.	3.3	17
40	Evo-Devo Lessons Learned from Honeybees. , 2018, , 1-12.		0
41	The honeybee as a model insect for developmental genetics. Genesis, 2017, 55, e23019.	1.6	21
42	A â€~phenotypic hangover': the predictive adaptive response and multigenerational effects of altered nutrition on the transcriptome of Drosophila melanogaster. Environmental Epigenetics, 2017, 3, dvx019.	1.8	10
43	Nutrition and Epigenetic Change in Insects: Evidence and Implications. Advances in Insect Physiology, 2017, 53, 31-54.	2.7	4
44	Analysis of the genome of the New Zealand giant collembolan (Holacanthella duospinosa) sheds light on hexapod evolution. BMC Genomics, 2017, 18, 795.	2.8	28
45	Notch signalling mediates reproductive constraint in the adult worker honeybee. Nature Communications, 2016, 7, 12427.	12.8	67
46	Convergent occurrence of the developmental hourglass in plant and animal embryogenesis?. Annals of Botany, 2016, 117, 833-843.	2.9	14
47	Striatal mRNA expression patterns underlying peak dose l-DOPA-induced dyskinesia in the 6-OHDA hemiparkinsonian rat. Neuroscience, 2016, 324, 238-251.	2.3	10
48	Transcriptome Analysis of Honeybee (Apis Mellifera) Haploid and Diploid Embryos Reveals Early Zygotic Transcription during Cleavage. PLoS ONE, 2016, 11, e0146447.	2.5	43
49	Origin and evolution of the enhancer of split complex. BMC Genomics, 2015, 16, 712.	2.8	8
50	Functional development of the adult ovine mammary gland—insights from gene expression profiling. BMC Genomics, 2015, 16, 748.	2.8	44
51	Comparative RNA seq analysis of the New Zealand glowworm Arachnocampa luminosa reveals bioluminescence-related genes. BMC Genomics, 2015, 16, 825.	2.8	18
52	What Do Studies of Insect Polyphenisms Tell Us about Nutritionally-Triggered Epigenomic Changes and Their Consequences?. Nutrients, 2015, 7, 1787-1797.	4.1	21
53	Stonefish toxin defines an ancient branch of the perforin-like superfamily. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15360-15365.	7.1	69
54	The genomes of two key bumblebee species with primitive eusocial organization. Genome Biology, 2015, 16, 76.	8.8	330

#	Article	IF	CITATIONS
55	The Lophotrochozoan TGF-β signalling cassette - diversification and conservation in a key signalling pathway. International Journal of Developmental Biology, 2014, 58, 533-549.	0.6	32
56	The importance of early life in childhood obesity and related diseases: a report from the 2014 Gravida Strategic Summit. Journal of Developmental Origins of Health and Disease, 2014, 5, 398-407.	1.4	11
57	The First Myriapod Genome Sequence Reveals Conservative Arthropod Gene Content and Genome Organisation in the Centipede Strigamia maritima. PLoS Biology, 2014, 12, e1002005.	5.6	221
58	Identification of reference genes for RT-qPCR in ovine mammary tissue during late pregnancy and lactation and in response to maternal nutritional programming. Physiological Genomics, 2014, 46, 560-570.	2.3	12
59	Components of the dorsal-ventral pathway also contribute to anterior-posterior patterning in honeybee embryos (Apis mellifera). EvoDevo, 2014, 5, 11.	3.2	33
60	Epigenetics, plasticity, and evolution: How do we link epigenetic change to phenotype?. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2014, 322, 208-220.	1.3	217
61	Epigenetics and the Maternal Germline. , 2014, , 27-41.		2
62	Expression pattern of empty-spiracles, a conserved head-patterning gene, in honeybee (Apis mellifera) embryos. Gene Expression Patterns, 2014, 15, 142-148.	0.8	6
63	Capturing embryonic development from metamorphosis: how did the terminal patterning signalling pathway of Drosophila evolve?. Current Opinion in Insect Science, 2014, 1, 45-51.	4.4	9
64	Canonical terminal patterning is an evolutionary novelty. Developmental Biology, 2013, 377, 245-261.	2.0	48
65	NMDA receptor expression and C terminus structure in the rotifer Brachionus plicatilis and long-term potentiation across the Metazoa. Invertebrate Neuroscience, 2013, 13, 125-134.	1.8	2
66	Biased gene expression in early honeybee larval development. BMC Genomics, 2013, 14, 903.	2.8	80
67	The pea aphid (Acyrthosiphon pisum) genome encodes two divergent early developmental programs. Developmental Biology, 2013, 377, 262-274.	2.0	27
68	RNA localization in the honeybee (Apis mellifera) oocyte reveals insights about the evolution of RNA localization mechanisms. Developmental Biology, 2013, 375, 193-201.	2.0	5
69	Genetic tests for alleles of complementary-sex-determiner to support honeybee breeding programmes. Apidologie, 2013, 44, 306-313.	2.0	18
70	Stable reference genes for the measurement of transcript abundance during larval caste development in the honeybee. Apidologie, 2013, 44, 357-366.	2.0	25
71	Gene expression indicates a zone of heterocyst differentiation within the thallus of the cyanolichen Pseudocyphellaria crocata. New Phytologist, 2012, 196, 862-872.	7.3	11
72	Deep sequencing and expression of microRNAs from early honeybee (Apis mellifera) embryos reveals a role in regulating early embryonic patterning. BMC Evolutionary Biology, 2012, 12, 211.	3.2	18

#	Article	IF	CITATIONS
73	Pair-Rule Gene Orthologues Have Unexpected Maternal Roles in the Honeybee (Apis mellifera). PLoS ONE, 2012, 7, e46490.	2.5	29
74	The evolution of oocyte patterning in insects: multiple cell-signaling pathways are active during honeybee oogenesis and are likely to play a role in axis patterning. Evolution & Development, 2011, 13, 127-137.	2.0	28
75	Diversity in insect axis formation: two <i>orthodenticle</i> genes and <i>hunchback</i> act in anterior patterning and influence dorsoventral organization in the honeybee (<i>Apis mellifera</i>). Development (Cambridge), 2011, 138, 3497-3507.	2.5	36
76	Notch signaling does not regulate segmentation in the honeybee, Apis mellifera. Development Genes and Evolution, 2010, 220, 179-190.	0.9	21
77	Comprehensive survey of developmental genes in the pea aphid, <i>Acyrthosiphon pisum</i> : frequent lineageâ€specific duplications and losses of developmental genes. Insect Molecular Biology, 2010, 19, 47-62.	2.0	81
78	Evolution of a genomic regulatory domain: The role of gene co-option and gene duplication in the Enhancer of split complex. Genome Research, 2010, 20, 917-928.	5.5	22
79	Genome Sequence of the Pea Aphid Acyrthosiphon pisum. PLoS Biology, 2010, 8, e1000313.	5.6	913
80	Germ cell specification and ovary structure in the rotifer Brachionus plicatilis. EvoDevo, 2010, 1, 5.	3.2	18
81	Giant, Krüppel, and caudal act as gap genes with extensive roles in patterning the honeybee embryo. Developmental Biology, 2010, 339, 200-211.	2.0	54
82	Effects of Presynaptic Mutations on a Postsynaptic Cacna1s Calcium Channel Colocalized with mGluR6 at Mouse Photoreceptor Ribbon Synapses. , 2009, 50, 505.		95
83	Immunohistochemistry on Honeybee <i>(Apis mellifera)</i> Embryos. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5227.	0.3	3
84	In Situ Hybridization of Sectioned Honeybee <i>(Apis mellifera)</i> Tissues: Figure 1 Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5226.	0.3	1
85	RNA Interference (RNAi) in Honeybee <i>(Apis mellifera)</i> Embryos: Figure 1 Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5228.	0.3	8
86	Fixation and Storage of Honeybee (Apis mellifera) Tissues. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5224-pdb.prot5224.	0.3	6
87	Whole-Mount In Situ Hybridization of Honeybee (Apis mellifera) Tissues. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5225-pdb.prot5225.	0.3	6
88	Tailless patterning functions are conserved in the honeybee even in the absence of Torso signaling. Developmental Biology, 2009, 335, 276-287.	2.0	46
89	The Honeybee <i>Apis mellifera</i> . Cold Spring Harbor Protocols, 2009, 2009, pdb.emo123.	0.3	11
90	Evolution of the insect Sox genes. BMC Evolutionary Biology, 2008, 8, 120.	3.2	53

#	Article	IF	CITATIONS
91	Evolutionary origin and genomic organisation of runt-domain containing genes in arthropods. BMC Genomics, 2008, 9, 558.	2.8	19
92	The activin receptor-like kinase 6 Booroola mutation enhances suppressive effects of bone morphogenetic protein 2 (BMP2), BMP4, BMP6 and growth and differentiation factor-9 on FSH release from ovine primary pituitary cell cultures. Journal of Endocrinology, 2008, 196, 251-261.	2.6	25
93	Large-scale gene discovery in the pea aphid Acyrthosiphon pisum (Hemiptera). Genome Biology, 2006, 7, R21.	9.6	123
94	Germ cell development in the Honeybee (Apis mellifera); vasa and nanos expression. , 2006, 6, 6.		70
95	Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 2006, 443, 931-949.	27.8	1,648
96	Patterns of conservation and change in honey bee developmental genes. Genome Research, 2006, 16, 1376-1384.	5.5	139
97	Expression of Pax group III genes in the honeybee (Apis mellifera). Development Genes and Evolution, 2005, 215, 499-508.	0.9	34
98	Non-radioactive in-situ hybridisation to honeybee embryos and ovaries. Apidologie, 2005, 36, 113-118.	2.0	38
99	A CACNA1F mutation identified in an X-linked retinal disorder shifts the voltage dependence of Cav1.4 channel activation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7553-7558.	7.1	129
100	Vasa expression and germ-cell specification in the spider mite Tetranychus urticae. Development Genes and Evolution, 2003, 212, 599-603.	0.9	19
101	Physical law not natural selection as the major determinant of biological complexity in the subcellular realm: new support for the pre-Darwinian conception of evolution by natural law. BioSystems, 2003, 71, 297-303.	2.0	28
102	Expression of pair-rule gene homologues in a chelicerate: early patterning of the two-spotted spider miteTetranychus urticae. Development (Cambridge), 2002, 129, 5461-5472.	2.5	106
103	Germ Line Development in the Grasshopper Schistocerca gregaria: vasa As a Marker. Developmental Biology, 2002, 252, 100-118.	2.0	60
104	Early embryo patterning in the grasshopper, <i>Schistocerca gregaria</i> : <i>wingless</i> , <i>decapentaplegic</i> and <i>caudal</i> expression. Development (Cambridge), 2001, 128, 3435-3444.	2.5	83
105	Maternal expression and early zygotic regulation of theHox3/zengene in the grasshopperSchistocerca gregaria. Evolution & Development, 2000, 2, 261-270.	2.0	43
106	Segmentation in silico. Nature, 2000, 406, 131-132.	27.8	18
107	A role for Fringe in segment morphogenesis but not segment formation in the grasshopper, Schistocerca gregaria. Development Genes and Evolution, 2000, 210, 329-336.	0.9	38
108	Developmental evolution: Axial patterning in insects. Current Biology, 1999, 9, R591-R594.	3.9	40

#	Article	IF	CITATIONS
109	Gene drive and RNAi technologies: a bio-cultural review of next-generation tools for pest wasp management in New Zealand. Journal of the Royal Society of New Zealand, 0, , 1-18.	1.9	0