List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1336346/publications.pdf Version: 2024-02-01

		4584	5244
212	30,578	88	171
papers	citations	h-index	g-index
221	221	221	33609
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Lactoferrin for Mental Health: Neuro-Redox Regulation and Neuroprotective Effects across the Blood-Brain Barrier with Special Reference to Neuro-COVID-19. Journal of Dietary Supplements, 2023, 20, 218-253.	1.4	5
2	COVID-19 during Pregnancy and Postpartum:. Journal of Dietary Supplements, 2022, 19, 115-142.	1.4	24
3	COVID-19 during Pregnancy and Postpartum:. Journal of Dietary Supplements, 2022, 19, 78-114.	1.4	16
4	Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nature Metabolism, 2022, 4, 651-662.	5.1	356
5	Sarcopenia – Molecular mechanisms and open questions. Ageing Research Reviews, 2021, 65, 101200.	5.0	170
6	Down regulation of glutathione and glutamate cysteine ligase in the inflammatory response of macrophages. Free Radical Biology and Medicine, 2020, 158, 53-59.	1.3	8
7	The proteasome beta 5 subunit is essential for sexually divergent adaptive homeostatic responses to oxidative stress in D. melanogaster. Free Radical Biology and Medicine, 2020, 160, 67-77.	1.3	1
8	Sex differences in the response to oxidative and proteolytic stress. Redox Biology, 2020, 31, 101488.	3.9	68
9	To adapt or not to adapt: Consequences of declining Adaptive Homeostasis and Proteostasis with age. Mechanisms of Ageing and Development, 2019, 177, 80-87.	2.2	27
10	Measuring redox effects on the activities of intracellular proteases such as the 20S Proteasome and the Immuno-Proteasome with fluorogenic peptides. Free Radical Biology and Medicine, 2019, 143, 16-24.	1.3	5
11	Silencing Bach1 alters aging-related changes in the expression of Nrf2-regulated genes in primary human bronchial epithelial cells. Archives of Biochemistry and Biophysics, 2019, 672, 108074.	1.4	16
12	Does Bach1 & c-Myc dependent redox dysregulation of Nrf2 & adaptive homeostasis decrease cancer risk in ageing?. Free Radical Biology and Medicine, 2019, 134, 708-714.	1.3	19
13	Free radicals and redox regulation in ageing. Free Radical Biology and Medicine, 2019, 134, 688-689.	1.3	4
14	Limitations to adaptive homeostasis in an hyperoxia-induced model of accelerated ageing. Redox Biology, 2019, 24, 101194.	3.9	17
15	Sex-specific stress tolerance, proteolysis, and lifespan in the invertebrate Tigriopus californicus. Experimental Gerontology, 2019, 119, 146-156.	1.2	43
16	Aging attenuates redox adaptive homeostasis and proteostasis in female mice exposed to traffic-derived nanoparticles (†vehicular smog'). Free Radical Biology and Medicine, 2018, 121, 86-97.	1.3	36
17	Sex-specific adaptive homeostasis in D. melanogaster depends on increased proteolysis by the 20S Proteasome: Data-in-Brief. Data in Brief, 2018, 17, 653-661.	0.5	6
18	Aging-related decline in the induction of Nrf2-regulated antioxidant genes in human bronchial epithelial cells. Redox Biology, 2018, 14, 35-40.	3.9	113

#	Article	IF	CITATIONS
19	Redox Regulation of Homeostasis and Proteostasis in Peroxisomes. Physiological Reviews, 2018, 98, 89-115.	13.1	79
20	Sexual Dimorphism and Aging Differentially Regulate Adaptive Homeostasis. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 141-149.	1.7	38
21	Adaptive homeostasis and the free radical theory of ageing. Free Radical Biology and Medicine, 2018, 124, 420-430.	1.3	142
22	Cardiovascular Adaptive Homeostasis in Exercise. Frontiers in Physiology, 2018, 9, 369.	1.3	11
23	The role of oxidative stress in anxiety disorder: cause or consequence?. Free Radical Research, 2018, 52, 737-750.	1.5	112
24	Aging and SKN-1-dependent Loss of 20S Proteasome Adaptation to Oxidative Stress inC. elegans. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 143-151.	1.7	30
25	The peroxisomal <scp>L</scp> on protease <scp>LonP2</scp> in aging and disease: functions and comparisons with mitochondrial <scp>L</scp> on protease <scp>LonP1</scp> . Biological Reviews, 2017, 92, 739-753.	4.7	43
26	Formation and repair of oxidatively generated damage in cellular DNA. Free Radical Biology and Medicine, 2017, 107, 13-34.	1.3	240
27	SIRT1 may play a crucial role in overloadâ€induced hypertrophy of skeletal muscle. Journal of Physiology, 2017, 595, 3361-3376.	1.3	29
28	The Mitochondrial Lon Protease Is Required for Age-Specific and Sex-Specific Adaptation to Oxidative Stress. Current Biology, 2017, 27, 1-15.	1.8	359
29	Oxidative DNA damage & amp; repair: An introduction. Free Radical Biology and Medicine, 2017, 107, 2-12.	1.3	218
30	Diminished stress resistance and defective adaptive homeostasis in age-related diseases. Clinical Science, 2017, 131, 2573-2599.	1.8	32
31	The role of declining adaptive homeostasis in ageing. Journal of Physiology, 2017, 595, 7275-7309.	1.3	136
32	Sexual dimorphism in oxidant-induced adaptive homeostasis in multiple wild-type D. melanogaster strains. Archives of Biochemistry and Biophysics, 2017, 636, 57-70.	1.4	11
33	The Oxygen Paradox, the French Paradox, and age-related diseases. GeroScience, 2017, 39, 499-550.	2.1	59
34	The age- and sex-specific decline of the 20s proteasome and the Nrf2/CncC signal transduction pathway in adaption and resistance to oxidative stress in Drosophila melanogaster. Aging, 2017, 9, 1153-1185.	1.4	46
35	Mitochondrial Lon protease in human disease and aging: Including an etiologic classification of Lon-related diseases and disorders. Free Radical Biology and Medicine, 2016, 100, 188-198.	1.3	129
36	The Oxygen Paradox, oxidative stress, and ageing. Archives of Biochemistry and Biophysics, 2016, 595, 28-32.	1.4	40

#	Article	IF	CITATIONS
37	The Immunoproteasome in oxidative stress, aging, and disease. Critical Reviews in Biochemistry and Molecular Biology, 2016, 51, 268-281.	2.3	72
38	Adaptive homeostasis. Molecular Aspects of Medicine, 2016, 49, 1-7.	2.7	215
39	What is the concentration of hydrogen peroxide in blood and plasma?. Archives of Biochemistry and Biophysics, 2016, 603, 48-53.	1.4	234
40	Degradation of oxidized proteins by the proteasome: Distinguishing between the 20S, 26S, and immunoproteasome proteolytic pathways. Molecular Aspects of Medicine, 2016, 50, 41-55.	2.7	168
41	The molecular chaperone Hsp70 promotes the proteolytic removal of oxidatively damaged proteins by the proteasome. Free Radical Biology and Medicine, 2016, 99, 153-166.	1.3	92
42	Translational Perspective on the Role of Testosterone in Sexual Function and Dysfunction. Journal of Sexual Medicine, 2016, 13, 1183-1198.	0.3	42
43	The Proteasome and Oxidative Stress in Alzheimer's Disease. Antioxidants and Redox Signaling, 2016, 25, 886-901.	2.5	74
44	Commentary on "Bach1 differentially regulates distinct Nrf2-dependent genes in human venous and coronary artery endothelial cells adapted to physiological oxygen levels―by Chapple et al Free Radical Biology and Medicine, 2016, 92, 163-164.	1.3	1
45	Transit of H2O2 across the endoplasmic reticulum membrane is not sluggish. Free Radical Biology and Medicine, 2016, 94, 157-160.	1.3	48
46	Oxidative stress response and Nrf2 signaling in aging. Free Radical Biology and Medicine, 2015, 88, 314-336.	1.3	644
47	TGFβ1 rapidly activates Src through a non-canonical redox signaling mechanism. Archives of Biochemistry and Biophysics, 2015, 568, 1-7.	1.4	30
48	The calcineurin antagonist RCAN1-4 is induced by exhaustive exercise in rat skeletal muscle. Free Radical Biology and Medicine, 2015, 87, 290-299.	1.3	11
49	Even free radicals should follow some rules: A Guide to free radical research terminology and methodology. Free Radical Biology and Medicine, 2015, 78, 233-235.	1.3	241
50	Mitochondrial biogenesis-associated factors underlie the magnitude of response to aerobic endurance training in rats. Pflugers Archiv European Journal of Physiology, 2015, 467, 779-788.	1.3	41
51	What Goes Wrong with Lon in Ageing?. Free Radical Biology and Medicine, 2014, 75, S6.	1.3	1
52	Acute Electrical Pulse Stimulation and Hyperglycemia Regulates RCAN1-4 in C2C12 myotubes through Oxidative Stress. Free Radical Biology and Medicine, 2014, 75, S29.	1.3	2
53	Resveratrol Attenuates Exercise-Induced Adaptive Responses in Rats Selectively Bred for Low Running Performance. Dose-Response, 2014, 12, dose-response.1.	0.7	22
54	How do nutritional antioxidants really work: Nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radical Biology and Medicine, 2014, 66, 24-35.	1.3	548

#	Article	IF	CITATIONS
55	A conserved role for the 20S proteasome and <i>Nrf2</i> transcription factor in oxidative-stress adaptation in mammals, <i>C. elegans</i> and <i>D. melanogaster</i> . Journal of Experimental Biology, 2013, 216, 543-53.	0.8	85
56	Reactive oxygen and nitrogen species in neurodegeneration. Free Radical Biology and Medicine, 2013, 62, 1-3.	1.3	7
57	Resveratrol enhances exercise training responses in rats selectively bred for high running performance. Food and Chemical Toxicology, 2013, 61, 53-59.	1.8	75
58	Upregulation of the mitochondrial Lon Protease allows adaptation to acute oxidative stress but dysregulation is associated with chronic stress, disease, and aging. Redox Biology, 2013, 1, 258-264.	3.9	123
59	Oxidative stress adaptation with acute, chronic, and repeated stress. Free Radical Biology and Medicine, 2013, 55, 109-118.	1.3	96
60	Chronic high levels of the RCAN1-1 protein may promote neurodegeneration and Alzheimer disease. Free Radical Biology and Medicine, 2013, 62, 47-51.	1.3	24
61	Competition of nuclear factor-erythroid 2 factors related transcription factor isoforms, Nrf1 and Nrf2, in antioxidant enzyme induction. Redox Biology, 2013, 1, 183-189.	3.9	31
62	Chronic Expression of RCAN1-1L Protein Induces Mitochondrial Autophagy and Metabolic Shift from Oxidative Phosphorylation to Glycolysis in Neuronal Cells. Journal of Biological Chemistry, 2012, 287, 14088-14098.	1.6	66
63	Nrf2-dependent Induction of Proteasome and Pa28αβ Regulator Are Required for Adaptation to Oxidative Stress. Journal of Biological Chemistry, 2012, 287, 10021-10031.	1.6	240
64	Differential roles of proteasome and immunoproteasome regulators Pa28αβ, Pa28γ and Pa200 in the degradation of oxidized proteins. Archives of Biochemistry and Biophysics, 2012, 523, 181-190.	1.4	119
65	Degradation of Damaged Proteins. Progress in Molecular Biology and Translational Science, 2012, 109, 227-248.	0.9	145
66	Age-associated declines in mitochondrial biogenesis and protein quality control factors are minimized by exercise training. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R127-R134.	0.9	127
67	A simple fluorescence labeling method for studies of protein oxidation, protein modification, and proteolysis. Free Radical Biology and Medicine, 2012, 52, 239-246.	1.3	17
68	Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radical Biology and Medicine, 2012, 52, 1-6.	1.3	1,424
69	Cigarette smoke extract stimulates epithelial–mesenchymal transition through Src activation. Free Radical Biology and Medicine, 2012, 52, 1437-1442.	1.3	61
70	Nrf2-regulated phase II enzymes are induced by chronic ambient nanoparticle exposure in young mice with age-related impairments. Free Radical Biology and Medicine, 2012, 52, 2038-2046.	1.3	136
71	Impairment of Lon-Induced Protection Against the Accumulation of Oxidized Proteins in Senescent Wi-38 Fibroblasts. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2011, 66A, 1178-1185.	1.7	49
72	Amyloid-β Toxicity and Tau Hyperphosphorylation are Linked Via RCAN1 in Alzheimer's Disease. Journal of Alzheimer's Disease, 2011, 27, 701-709.	1.2	121

#	Article	IF	CITATIONS
73	HSP70 mediates dissociation and reassociation of the 26S proteasome during adaptation to oxidative stress. Free Radical Biology and Medicine, 2011, 51, 1355-1364.	1.3	184
74	Do RCAN1 proteins link chronic stress with neurodegeneration?. FASEB Journal, 2011, 25, 3306-3311.	0.2	44
75	RasGrf1 and Aging. Aging, 2011, 3, 455-455.	1.4	2
76	The evolution of Free Radical Biology & Medicine: Still radical after a quarter of a century!. Free Radical Biology and Medicine, 2010, 49, 1825-1833.	1.3	2
77	Mitochondrial fission and cristae disruption increase the response of cell models of Huntington's disease to apoptotic stimuli. EMBO Molecular Medicine, 2010, 2, 490-503.	3.3	240
78	The immunoproteasome, the 20S proteasome and the PA28Î \pm Î 2 proteasome regulator are oxidative-stress-adaptive proteolytic complexes. Biochemical Journal, 2010, 432, 585-595.	1.7	276
79	Decreased SIRT1 deacetylase activity in sporadic inclusion-body myositis muscle fibers. Neurobiology of Aging, 2010, 31, 1637-1648.	1.5	20
80	Tau protein degradation is catalyzed by the ATP/ubiquitin-independent 20S proteasome under normal cell conditions. Archives of Biochemistry and Biophysics, 2010, 500, 181-188.	1.4	71
81	Regulator of Calcineurin (RCAN1-1L) Is Deficient in Huntington Disease and Protective against Mutant Huntingtin Toxicity in Vitro. Journal of Biological Chemistry, 2009, 284, 11845-11853.	1.6	42
82	Exercise improves import of 8-oxoguanine DNA glycosylase into the mitochondrial matrix of skeletal muscle and enhances the relative activity. Free Radical Biology and Medicine, 2009, 46, 238-243.	1.3	48
83	Mitochondrial Lon protease is a human stress protein. Free Radical Biology and Medicine, 2009, 46, 1042-1048.	1.3	108
84	Free radicals and exercise: An introduction. Free Radical Biology and Medicine, 2008, 44, 123-125.	1.3	58
85	Production, detection, and adaptive responses to free radicals in exercise. Free Radical Biology and Medicine, 2008, 44, 215-223.	1.3	224
86	Renaming the DSCR1 / Adapt78 gene family as RCAN : regulators of calcineurin. FASEB Journal, 2007, 21, 3023-3028.	0.2	157
87	Optimal determination of heart tissue 26S-proteasome activity requires maximal stimulating ATP concentrations. Journal of Molecular and Cellular Cardiology, 2007, 42, 265-269.	0.9	71
88	RCAN1-1L is overexpressed in neurons of Alzheimer's disease patients. FEBS Journal, 2007, 274, 1715-1724.	2.2	68
89	Is vitamin E an antioxidant, a regulator of signal transduction and gene expression, or a â€junk' food? Comments on the two accompanying papers: "Molecular mechanism of α-tocopherol action―by A. Azzi and "Vitamin E, antioxidant and nothing more―by M. Traber and J. Atkinson. Free Radical Biology and Medicine, 2007, 43. 2-3.	1.3	37
90	Importance of the Lon Protease in Mitochondrial Maintenance and the Significance of Declining Lon in Aging. Annals of the New York Academy of Sciences, 2007, 1119, 78-87.	1.8	94

#	Article	IF	CITATIONS
91	Phosphorylation inhibits turnover of the tau protein by the proteasome: influence of RCAN1 and oxidative stress. Biochemical Journal, 2006, 400, 511-520.	1.7	154
92	RCAN1 (DSCR1 or Adapt78)* stimulates expression of GSK-3beta. FEBS Journal, 2006, 273, 2100-2109.	2.2	54
93	Free radical biology and medicine: it's a gas, man!. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R491-R511.	0.9	383
94	Preferential degradation of oxidized proteins by the 20S proteasome may be inhibited in aging and in inflammatory neuromuscular diseases. Neurology, 2006, 66, S93-S96.	1.5	73
95	Downregulation of the human Lon protease impairs mitochondrial structure and function and causes cell death. Free Radical Biology and Medicine, 2005, 38, 665-677.	1.3	194
96	Aggregates of oxidized proteins (lipofuscin) induce apoptosis through proteasome inhibition and dysregulation of proapoptotic proteins. Free Radical Biology and Medicine, 2005, 38, 1093-1101.	1.3	107
97	Lipid peroxidation, phospholipases, lipoprotein oxidation, and atherosclerosis: A tribute to Professor Alex Sevanian (1946–2005). Free Radical Biology and Medicine, 2005, 39, 705-710.	1.3	0
98	Protein oxidation and degradation during postmitotic senescence. Free Radical Biology and Medicine, 2005, 39, 1208-1215.	1.3	97
99	The evolution of : A 20-year history. Free Radical Biology and Medicine, 2005, 39, 1263-1264.	1.3	21
100	Multiple roles of the DSCR1 (Adapt78 or RCAN1) gene and its protein product Calcipressin 1 (or RCAN1) in disease. Cellular and Molecular Life Sciences, 2005, 62, 2477-2486.	2.4	103
101	Oxidized and Ubiquitinated Proteins May Predict Recovery of Postischemic Cardiac Function: Essential Role of the Proteasome. Antioxidants and Redox Signaling, 2005, 7, 538-546.	2.5	121
102	Proteasome Inhibition and Aggresome Formation in Sporadic Inclusion-Body Myositis and in Amyloid-β Precursor Protein-Overexpressing Cultured Human Muscle Fibers. American Journal of Pathology, 2005, 167, 517-526.	1.9	105
103	DSCR1(Adapl78) modulates expression of SOD1. FASEB Journal, 2004, 18, 62-69.	0.2	37
104	Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and â€~aggresomes' during oxidative stress, aging, and disease. International Journal of Biochemistry and Cell Biology, 2004, 36, 2519-2530.	1.2	577
105	Potential roles of protein oxidation and the immunoproteasome in MHC class I antigen presentation: the †PrOxl' hypothesis. Archives of Biochemistry and Biophysics, 2004, 423, 88-96.	1.4	50
106	Free radical biology - terminology and critical thinking. FEBS Letters, 2004, 558, 3-6.	1.3	161
107	DSCR1(Adapt78)A Janus Gene Providing Stress Protection but Causing Alzheimer's Disease?. IUBMB Life, 2003, 55, 29-31.	1.5	20
108	Genetic Aberrations in Chernobyl-Related Thyroid Cancers: Implications for Possible Future Nuclear Accidents or Nuclear Attacks. IUBMB Life, 2003, 55, 637-641.	1.5	11

#	Article	IF	CITATIONS
109	Cytotoxic effect of doxycycline and its implications for tet-on gene expression systems. Analytical Biochemistry, 2003, 318, 152-154.	1.1	32
110	Proteasome inhibitors induce intracellular protein aggregation and cell death by an oxygen-dependent mechanism. FEBS Letters, 2003, 542, 89-94.	1.3	71
111	The proteasomal system and HNE-modified proteins. Molecular Aspects of Medicine, 2003, 24, 195-204.	2.7	178
112	Selective degradation of oxidatively modified protein substrates by the proteasome. Biochemical and Biophysical Research Communications, 2003, 305, 709-718.	1.0	430
113	Ubiquitin Conjugation Is Not Required for the Degradation of Oxidized Proteins by Proteasome. Journal of Biological Chemistry, 2003, 278, 311-318.	1.6	384
114	Characterization of <1>adapt33 1 , a Stress-Inducible Riboregulator. Gene Expression, 2003, 11, 85-94.	0.5	15
115	Ezrin turnover and cell shape changes catalyzed by proteasome in oxidatively stressed cells. FASEB Journal, 2002, 16, 1602-1610.	0.2	38
116	Analysis of Gene Expression Following Oxidative Stress. , 2002, 196, 155-162.		10
117	The DSCR1 (Adapt78) isoform 1 protein calcipressin 1 inhibits calcineurin and protects against acute calciumâ€mediated stress damage, including transient oxidative stress. FASEB Journal, 2002, 16, 814-824.	0.2	121
118	Oxidative Defense Mechanisms. , 2002, , 679-689.		2
119	Proteasome-Dependent Turnover of Protein Disulfide Isomerase in Oxidatively Stressed Cells. Archives of Biochemistry and Biophysics, 2002, 397, 407-413.	1.4	40
120	Modulation of Lon protease activity and aconitase turnover during aging and oxidative stress. FEBS Letters, 2002, 532, 103-106.	1.3	213
121	Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nature Cell Biology, 2002, 4, 674-680.	4.6	509
122	Atherosclerosis: another protein misfolding disease?. Trends in Molecular Medicine, 2002, 8, 370-374.	3.5	69
123	Calcium and oxidative stress: from cell signaling to cell death. Molecular Immunology, 2002, 38, 713-721. Protein turnover by the proteasome in aging and disease 1.2.1This article is part of a series of reviews.	1.0	722
124	on $\hat{a} \in \mathbb{C}$ Oxidatively Modified Proteins in Aging and Disease. $\hat{a} \in \mathbb{C}$ The full list of papers may be found on the homepage of the journal.Davies and Shringarpure are studying the mechanism by which the proteasome recognizes and degrades oxidatively damaged proteins, and how protein oxidation and proteolysis are affected by aging and disease. 2Guest Editor: Earl Stadtman. Free Radical Biology and	1.3	220
125	Gene expression in Alzheimer's disease. Drugs of Today, 2002, 38, 509.	2.4	12

126 Differential display: a critical analysis. Gene Expression, 2002, 10, 101-7.

0.5 6

#	Article	IF	CITATIONS
127	Glutathiolation of the Proteasome Is Enhanced by Proteolytic Inhibitors. Archives of Biochemistry and Biophysics, 2001, 389, 254-263.	1.4	73
128	Degradation of oxidized proteins by the 20S proteasome. Biochimie, 2001, 83, 301-310.	1.3	788
129	Protein degradation in mitochondria: implications for oxidative stress, aging and disease:. Mitochondrion, 2001, 1, 33-49.	1.6	92
130	The essential role of calcium in induction of the DSCR1 (ADAPT78) gene. BioFactors, 2001, 15, 91-93.	2.6	8
131	Protein oxidation and 20S proteasome-dependent proteolysis in mammalian cells. Cellular and Molecular Life Sciences, 2001, 58, 1442-1450.	2.4	190
132	Induction and repression of DAN1 and the family of anaerobic mannoprotein genes in Saccharomyces cerevisiae occurs through a complex array of regulatory sites. Nucleic Acids Research, 2001, 29, 799-808.	6.5	73
133	Mechanism of the Formation and Proteolytic Release of H2O2-induced Dityrosine and Tyrosine Oxidation Products in Hemoglobin and Red Blood Cells. Journal of Biological Chemistry, 2001, 276, 24129-24136.	1.6	89
134	Chronic Overexpression of the Calcineurin Inhibitory Gene DSCR1 (Adapt78)Is Associated with Alzheimer's Disease. Journal of Biological Chemistry, 2001, 276, 38787-38794.	1.6	203
135	Regulatory Mechanisms Controlling Expression of the <i>DAN</i> / <i>TIR</i> Mannoprotein Genes During Anaerobic Remodeling of the Cell Wall in <i>Saccharomyces cerevisiae</i> . Genetics, 2001, 157, 1169-1177.	1.2	118
136	Proteasome inhibition by lipofuscin/ceroid during postmitotic aging of fibroblasts. FASEB Journal, 2000, 14, 1490-1498.	0.2	269
137	Proteasome inhibition by lipofuscin/ceroid during postmitotic aging of fibroblasts. FASEB Journal, 2000, 14, 1490-1498.	0.2	242
138	Mitochondrial free radical generation, oxidative stress, and aging11This article is dedicated to the memory of our dear friend, colleague, and mentor Lars Ernster (1920–1998), in gratitude for all he gave to us Free Radical Biology and Medicine, 2000, 29, 222-230.	1.3	2,556
139	Polynucleotide degradation during early stage response to oxidative stress is specific to mitochondria. Free Radical Biology and Medicine, 2000, 28, 281-288.	1.3	33
140	Redox Regulation of Gene Expression. , 2000, , 21-45.		8
141	Protein oxidation and degradation during cellular senescence of human BJ fibroblasts: part Il—aging of nondividing cells. FASEB Journal, 2000, 14, 2503-2510.	0.2	148
142	The Measurement of Protein Degradation in Response to Oxidative Stress. , 2000, 99, 49-60.		32
143	An Overview of Oxidative Stress. IUBMB Life, 2000, 50, 241-244.	1.5	44
144	Oxidative Stress, Antioxidant Defenses, and Damage Removal, Repair, and Replacement Systems. IUBMB Life, 2000, 50, 279-289.	1.5	598

#	Article	IF	CITATIONS
145	Protein oxidation and degradation during cellular senescence of human BJ fibroblasts: part l— effects of proliferative senescence. FASEB Journal, 2000, 14, 2495-2502.	0.2	202
146	An Overview of Oxidative Stress. IUBMB Life, 2000, 50, 241-244.	1.5	29
147	Oxidative Stress, Antioxidant Defenses, and Damage Removal, Repair, and Replacement Systems. IUBMB Life, 2000, 50, 279-289.	1.5	313
148	The Broad Spectrum of Responses to Oxidants in Proliferating Cells: A New Paradigm for Oxidative Stress. IUBMB Life, 1999, 48, 41-47.	1.5	304
149	The Broad Spectrum of Responses to Oxidants in Proliferating Cells: A New Paradigm for Oxidative Stress. IUBMB Life, 1999, 48, 41-47.	1.5	374
150	Influence of DNA Binding on the Degradation of Oxidized Histones by the 20S Proteasome. Archives of Biochemistry and Biophysics, 1999, 362, 211-216.	1.4	43
151	adapt78, a Stress-Inducible mRNA, Is Related to the Glucose-Regulated Protein Family of Genes. Archives of Biochemistry and Biophysics, 1999, 368, 67-74.	1.4	43
152	The "birth" of Life. IUBMB Life, 1999, 48, 3-3.	1.5	0
153	Oxidative stress causes a general, calcium-dependent degradation of mitochondrial polynucleotides. Free Radical Biology and Medicine, 1998, 25, 1106-1111.	1.3	38
154	Peroxynitrite Increases the Degradation of Aconitase and Other Cellular Proteins by Proteasome. Journal of Biological Chemistry, 1998, 273, 10857-10862.	1.6	230
155	Comparative resistance of the 20S and 26S proteasome to oxidative stress. Biochemical Journal, 1998, 335, 637-642.	1.7	410
156	Repair Systems and Inducible Defenses against Oxidant Stress. , 1998, , 253-266.		0
157	Hamsteradapt78mRNA Is a Down Syndrome Critical Region Homologue That Is Inducible by Oxidative Stress. Archives of Biochemistry and Biophysics, 1997, 342, 6-12.	1.4	135
158	Modulation of a cardiogenic shock inducible RNA by chemical stress: adapt 73/PigHep3. Surgery, 1997, 121, 581-587.	1.0	21
159	The DAN1 gene of S. cerevisiae is regulated in parallel with the hypoxic genes, but by a different mechanism. Gene, 1997, 192, 199-205.	1.0	50
160	Degradation of oxidized proteins in mammalian cells. FASEB Journal, 1997, 11, 526-534.	0.2	772
161	Down-regulation of Mammalian Mitochondrial RNAs During Oxidative Stress. Free Radical Biology and Medicine, 1997, 22, 551-559.	1.3	113
162	16S Mitochondrial Ribosomal RNA Degradation Is Associated with Apoptosis. Free Radical Biology and Medicine, 1997, 22, 1295-1300.	1.3	48

#	Article	IF	CITATIONS
163	Hydrogen Peroxide Induces the Expression ofadapt15,a Novel RNA Associated with Polysomes in Hamster HA-1 Cells. Archives of Biochemistry and Biophysics, 1996, 325, 256-264.	1.4	51
164	Oxidant-Inducibleadapt15RNA Is Associated with Growth Arrest- and DNA Damage-Induciblegadd153andgadd45. Archives of Biochemistry and Biophysics, 1996, 329, 137-144.	1.4	42
165	adapt33,a Novel Oxidant-Inducible RNA from Hamster HA-1 Cells. Archives of Biochemistry and Biophysics, 1996, 332, 255-260.	1.4	41
166	Oxidative stress induces the levels of a MAFG homolog in hamster HA-1 cells. Free Radical Biology and Medicine, 1996, 21, 521-525.	1.3	55
167	Manganese Superoxide Dismutase Modulates Interleukin-1α Levels in HT-1080 Fibrosarcoma Cells. Journal of Biological Chemistry, 1996, 271, 18898-18903.	1.6	29
168	Degradation of Oxidized Proteins in K562 Human Hematopoietic Cells by Proteasome. Journal of Biological Chemistry, 1996, 271, 15504-15509.	1.6	305
169	Oxidative stress: the paradox of aerobic life. Biochemical Society Symposia, 1995, 61, 1-31.	2.7	848
170	Proteolysis in Cultured Liver Epithelial Cells during Oxidative Stress. Journal of Biological Chemistry, 1995, 270, 2344-2351.	1.6	384
171	[16] Assessing gene expression during oxidative stress. Methods in Enzymology, 1994, 234, 175-217.	0.4	30
172	Inhibition of Collagenase Activity byN-Chlorotaurine, a Product of Activated Neutrophils. Arthritis and Rheumatism, 1994, 37, 424-427.	6.7	20
173	Hydrogen peroxide production by red blood cells. Free Radical Biology and Medicine, 1994, 16, 123-129.	1.3	109
174	[39] Dityrosine: A marker for oxidatively modified proteins and selective proteolysis. Methods in Enzymology, 1994, 233, 363-371.	0.4	145
175	Adaptive Response and Oxidative Stress. Environmental Health Perspectives, 1994, 102, 25.	2.8	74
176	[30] Hydrogen peroxide-mediated ferrylhemoglobin generation in Vitro and in red blood cells. Methods in Enzymology, 1994, 231, 490-496.	0.4	64
177	The radical view. Free Radical Biology and Medicine, 1993, 15, vii-viii.	1.3	0
178	Potential roles of hypochlorous acid and N-chloroamines in collagen breakdown by phagocytic cells in synovitis. Free Radical Biology and Medicine, 1993, 15, 637-643.	1.3	111
179	Protein modification by oxidants and the role of proteolytic enzymes. Biochemical Society Transactions, 1993, 21, 346-353.	1.6	123
180	HSP70 and other possible heat shock or oxidative stress proteins are induced in skeletal muscle, heart, and liver during exercise. Free Radical Biology and Medicine, 1991, 11, 239-246.	1.3	307

#	Article	IF	CITATIONS
181	A proposal to limit the proliferation of major meetings. Free Radical Biology and Medicine, 1991, 11, v.	1.3	Ο
182	Protein, Lipid and DNA Repair Systems in Oxidative Stress: The Free-Radical Theory of Aging Revisited. Gerontology, 1991, 37, 166-180.	1.4	380
183	OXIDATIVE DAMAGE & REPAIR: INTRODUCTION AND OVERVIEW. , 1991, , xvii-xxvii.		7
184	AN ANTIOXIDANT ROLE FOR HEMOGLOBIN. , 1991, , 87-92.		0
185	SELECTIVE PROTEOLYSIS OF OXIDATIVELY MODIFIED PROTEINS BY MACROXYPROTEINASE (M.O.P.). , 1991, , 364-372.		1
186	Lens proteasome shows enhanced rates of degradation of hydroxyl radical modified alpha-crystallin. Free Radical Biology and Medicine, 1990, 8, 217-222.	1.3	74
187	[51] Protein degradation as an index of oxidative stress. Methods in Enzymology, 1990, 186, 485-502.	0.4	211
188	Protein Oxidation and Proteolytic Degradation General Aspects and Relationship to Cataract Formation. Advances in Experimental Medicine and Biology, 1990, 264, 503-511.	0.8	26
189	Constitutive and Inducible Repair Systems in Oxidative Stress. , 1990, , 929-952.		1
190	It's getting better all the time. Free Radical Biology and Medicine, 1989, 7, 115-116.	1.3	0
191	Macroxyproteinase (M.O.P.): A 670 kDa Proteinase complex that degrades oxidatively denatured proteins in red blood cells. Free Radical Biology and Medicine, 1989, 7, 521-536.	1.3	175
192	The radical view. Free Radical Biology and Medicine, 1989, 6, 121-122.	1.3	1
193	The oxygen society and SFRR international. Free Radical Biology and Medicine, 1989, 6, 1-2.	1.3	3
194	Superoxide dismutase is preferentially degraded by a proteolytic system from red blood cells following oxidative modification by hydrogen peroxide. Free Radical Biology and Medicine, 1988, 5, 335-339.	1.3	91
195	A Secondary Antioxidant Defense Role for Proteolytic Systems. , 1988, 49, 575-585.		6
196	Possible Importance of Proteolytic Systems as Secondary Antioxidant Defenses During Ischemia-Reperfusion Injury. , 1988, , 169-185.		1
197	Bacterial Killing by Phagocytes: Potential Role(s) of Hypochlorous Acid and Hydrogen Peroxide in Protein Turnover, DNA Synthesis, and RNA Synthesis. , 1988, 49, 829-832.		2
198	The Measurement of Protein Degradation in Response to Oxidative Stress. , 1988, 49, 531-535.		1

#	Article	IF	CITATIONS
199	The radical view: Young investigator award in free radical biology and medicine. Free Radical Biology and Medicine, 1987, 3, 311-312.	1.3	2
200	Protein oxidation and loss of protease activity may lead to cataract formation in the aged lens. Free Radical Biology and Medicine, 1987, 3, 371-377.	1.3	185
201	Intracellular proteolytic systems may function as secondary antioxidant defenses: An hypothesis. Journal of Free Radicals in Biology & Medicine, 1986, 2, 155-173.	2.1	260
202	The Stabilization of Ascorbic Acid by Uric Acid. Advances in Experimental Medicine and Biology, 1986, 195 Pt A, 325-327.	0.8	1
203	Conservation of vitamin C by uric acid in blood. Journal of Free Radicals in Biology & Medicine, 1985, 1, 117-124.	2.1	105
204	Comparative cardiac oxygen radical metabolism by anthracycline antibiotics, mitoxantrone, bisantrene, 4'-(9-acridinylamino)-methanesulfon-m-anisidide, and neocarzinostatin. Biochemical Pharmacology, 1983, 32, 2935-2939.	2.0	42
205	Mitochondrial NADH dehydrogenase-catalyzed oxygen radical production by adriamycin, and the relative inactivity of 5-iminodaunorubicin. FEBS Letters, 1983, 153, 227-230.	1.3	123
206	Effects of dietary iron deficiency on iron-sulfur proteins and bioenergetic functions of skeletal muscle mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 1982, 679, 210-220.	0.5	55
207	Exercise bioenergetics following sprint training. Archives of Biochemistry and Biophysics, 1982, 215, 260-265.	1.4	60
208	Vitamin E deficiency and photosensitization of electron-transport carriers in microsomes. FEBS Letters, 1982, 139, 241-244.	1.3	12
209	MEMBRANE EFFECTS OF VITAMIN E DEFICIENCY: BIOENERGETIC AND SURFACE CHARGE DENSITY STUDIES OF SKELETAL MUSCLE AND LIVER MITOCHONDRIA. Annals of the New York Academy of Sciences, 1982, 393, 32-47.	1.8	158
210	Free radicals and tissue damage produced by exercise. Biochemical and Biophysical Research Communications, 1982, 107, 1198-1205.	1.0	1,499
211	Ubisemiquinone radicals in liver: Implications for a mitochondrial Q cycle in vivo. Biochemical and Biophysical Research Communications, 1982, 107, 1292-1299.	1.0	41
212	Biochemical adaptation of mitochondria, muscle, and whole-animal respiration to endurance training. Archives of Biochemistry and Biophysics, 1981, 209, 539-554.	1.4	395