List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1336346/publications.pdf Version: 2024-02-01

		3933	4548
212	30,578	88	171
papers	citations	h-index	g-index
221	221	221	30660
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mitochondrial free radical generation, oxidative stress, and aging11This article is dedicated to the memory of our dear friend, colleague, and mentor Lars Ernster (1920–1998), in gratitude for all he gave to us Free Radical Biology and Medicine, 2000, 29, 222-230.	2.9	2,556
2	Free radicals and tissue damage produced by exercise. Biochemical and Biophysical Research Communications, 1982, 107, 1198-1205.	2.1	1,499
3	Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radical Biology and Medicine, 2012, 52, 1-6.	2.9	1,424
4	Oxidative stress: the paradox of aerobic life. Biochemical Society Symposia, 1995, 61, 1-31.	2.7	848
5	Degradation of oxidized proteins by the 20S proteasome. Biochimie, 2001, 83, 301-310.	2.6	788
6	Degradation of oxidized proteins in mammalian cells. FASEB Journal, 1997, 11, 526-534.	0.5	772
7	Calcium and oxidative stress: from cell signaling to cell death. Molecular Immunology, 2002, 38, 713-721.	2.2	722
8	Oxidative stress response and Nrf2 signaling in aging. Free Radical Biology and Medicine, 2015, 88, 314-336.	2.9	644
9	Oxidative Stress, Antioxidant Defenses, and Damage Removal, Repair, and Replacement Systems. IUBMB Life, 2000, 50, 279-289.	3.4	598
10	Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and â€~aggresomes' during oxidative stress, aging, and disease. International Journal of Biochemistry and Cell Biology, 2004, 36, 2519-2530.	2.8	577
11	How do nutritional antioxidants really work: Nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radical Biology and Medicine, 2014, 66, 24-35.	2.9	548
12	Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nature Cell Biology, 2002, 4, 674-680.	10.3	509
13	Selective degradation of oxidatively modified protein substrates by the proteasome. Biochemical and Biophysical Research Communications, 2003, 305, 709-718.	2.1	430
14	Comparative resistance of the 20S and 26S proteasome to oxidative stress. Biochemical Journal, 1998, 335, 637-642.	3.7	410
15	Biochemical adaptation of mitochondria, muscle, and whole-animal respiration to endurance training. Archives of Biochemistry and Biophysics, 1981, 209, 539-554.	3.0	395
16	Proteolysis in Cultured Liver Epithelial Cells during Oxidative Stress. Journal of Biological Chemistry, 1995, 270, 2344-2351.	3.4	384
17	Ubiquitin Conjugation Is Not Required for the Degradation of Oxidized Proteins by Proteasome. Journal of Biological Chemistry, 2003, 278, 311-318.	3.4	384
18	Free radical biology and medicine: it's a gas, man!. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R491-R511.	1.8	383

#	Article	IF	CITATIONS
19	Protein, Lipid and DNA Repair Systems in Oxidative Stress: The Free-Radical Theory of Aging Revisited. Gerontology, 1991, 37, 166-180.	2.8	380
20	The Broad Spectrum of Responses to Oxidants in Proliferating Cells: A New Paradigm for Oxidative Stress. IUBMB Life, 1999, 48, 41-47.	3.4	374
21	The Mitochondrial Lon Protease Is Required for Age-Specific and Sex-Specific Adaptation to Oxidative Stress. Current Biology, 2017, 27, 1-15.	3.9	359
22	Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nature Metabolism, 2022, 4, 651-662.	11.9	356
23	Oxidative Stress, Antioxidant Defenses, and Damage Removal, Repair, and Replacement Systems. IUBMB Life, 2000, 50, 279-289.	3.4	313
24	HSP70 and other possible heat shock or oxidative stress proteins are induced in skeletal muscle, heart, and liver during exercise. Free Radical Biology and Medicine, 1991, 11, 239-246.	2.9	307
25	Degradation of Oxidized Proteins in K562 Human Hematopoietic Cells by Proteasome. Journal of Biological Chemistry, 1996, 271, 15504-15509.	3.4	305
26	The Broad Spectrum of Responses to Oxidants in Proliferating Cells: A New Paradigm for Oxidative Stress. IUBMB Life, 1999, 48, 41-47.	3.4	304
27	The immunoproteasome, the 20S proteasome and the PA28αβ proteasome regulator are oxidative-stress-adaptive proteolytic complexes. Biochemical Journal, 2010, 432, 585-595.	3.7	276
28	Proteasome inhibition by lipofuscin/ceroid during postmitotic aging of fibroblasts. FASEB Journal, 2000, 14, 1490-1498.	0.5	269
29	Intracellular proteolytic systems may function as secondary antioxidant defenses: An hypothesis. Journal of Free Radicals in Biology & Medicine, 1986, 2, 155-173.	2.1	260
30	Proteasome inhibition by lipofuscin/ceroid during postmitotic aging of fibroblasts. FASEB Journal, 2000, 14, 1490-1498.	0.5	242
31	Even free radicals should follow some rules: A Guide to free radical research terminology and methodology. Free Radical Biology and Medicine, 2015, 78, 233-235.	2.9	241
32	Mitochondrial fission and cristae disruption increase the response of cell models of Huntington's disease to apoptotic stimuli. EMBO Molecular Medicine, 2010, 2, 490-503.	6.9	240
33	Nrf2-dependent Induction of Proteasome and Pa28αβ Regulator Are Required for Adaptation to Oxidative Stress. Journal of Biological Chemistry, 2012, 287, 10021-10031.	3.4	240
34	Formation and repair of oxidatively generated damage in cellular DNA. Free Radical Biology and Medicine, 2017, 107, 13-34.	2.9	240
35	What is the concentration of hydrogen peroxide in blood and plasma?. Archives of Biochemistry and Biophysics, 2016, 603, 48-53.	3.0	234
36	Peroxynitrite Increases the Degradation of Aconitase and Other Cellular Proteins by Proteasome. Journal of Biological Chemistry, 1998, 273, 10857-10862.	3.4	230

#	Article	IF	CITATIONS
37	Production, detection, and adaptive responses to free radicals in exercise. Free Radical Biology and Medicine, 2008, 44, 215-223. Protein turnover by the proteasome in aging and disease 1,2 1This article is part of a series of reviews	2.9	224
38	on "Oxidativelý Modified Proteins in Áging and Disease.―The full list of papers may be found on the homepage of the journal.Davies and Shringarpure are studying the mechanism by which the proteasome recognizes and degrades oxidatively damaged proteins, and how protein oxidation and proteolysis are affected by aging and disease. 2Guest Editor: Earl Stadtman. Free Radical Biology and	2.9	220
39	Medicine, 2002, 32, 1084-1089. Oxidative DNA damage & repair: An introduction. Free Radical Biology and Medicine, 2017, 107, 2-12.	2.9	218
40	Adaptive homeostasis. Molecular Aspects of Medicine, 2016, 49, 1-7.	6.4	215
41	Modulation of Lon protease activity and aconitase turnover during aging and oxidative stress. FEBS Letters, 2002, 532, 103-106.	2.8	213
42	[51] Protein degradation as an index of oxidative stress. Methods in Enzymology, 1990, 186, 485-502.	1.0	211
43	Chronic Overexpression of the Calcineurin Inhibitory Gene DSCR1 (Adapt78)Is Associated with Alzheimer's Disease. Journal of Biological Chemistry, 2001, 276, 38787-38794.	3.4	203
44	Protein oxidation and degradation during cellular senescence of human BJ fibroblasts: part l— effects of proliferative senescence. FASEB Journal, 2000, 14, 2495-2502.	0.5	202
45	Downregulation of the human Lon protease impairs mitochondrial structure and function and causes cell death. Free Radical Biology and Medicine, 2005, 38, 665-677.	2.9	194
46	Protein oxidation and 20S proteasome-dependent proteolysis in mammalian cells. Cellular and Molecular Life Sciences, 2001, 58, 1442-1450.	5.4	190
47	Protein oxidation and loss of protease activity may lead to cataract formation in the aged lens. Free Radical Biology and Medicine, 1987, 3, 371-377.	2.9	185
48	HSP70 mediates dissociation and reassociation of the 26S proteasome during adaptation to oxidative stress. Free Radical Biology and Medicine, 2011, 51, 1355-1364.	2.9	184
49	The proteasomal system and HNE-modified proteins. Molecular Aspects of Medicine, 2003, 24, 195-204.	6.4	178
50	Macroxyproteinase (M.O.P.): A 670 kDa Proteinase complex that degrades oxidatively denatured proteins in red blood cells. Free Radical Biology and Medicine, 1989, 7, 521-536.	2.9	175
51	Sarcopenia – Molecular mechanisms and open questions. Ageing Research Reviews, 2021, 65, 101200.	10.9	170
52	Degradation of oxidized proteins by the proteasome: Distinguishing between the 20S, 26S, and immunoproteasome proteolytic pathways. Molecular Aspects of Medicine, 2016, 50, 41-55.	6.4	168
53	Free radical biology - terminology and critical thinking. FEBS Letters, 2004, 558, 3-6.	2.8	161
54	MEMBRANE EFFECTS OF VITAMIN E DEFICIENCY: BIOENERGETIC AND SURFACE CHARGE DENSITY STUDIES OF SKELETAL MUSCLE AND LIVER MITOCHONDRIA. Annals of the New York Academy of Sciences, 1982, 393, 32-47.	3.8	158

#	Article	IF	CITATIONS
55	Renaming the DSCR1 / Adapt78 gene family as RCAN : regulators of calcineurin. FASEB Journal, 2007, 21, 3023-3028.	0.5	157
56	Phosphorylation inhibits turnover of the tau protein by the proteasome: influence of RCAN1 and oxidative stress. Biochemical Journal, 2006, 400, 511-520.	3.7	154
57	Protein oxidation and degradation during cellular senescence of human BJ fibroblasts: part Il—aging of nondividing cells. FASEB Journal, 2000, 14, 2503-2510.	0.5	148
58	[39] Dityrosine: A marker for oxidatively modified proteins and selective proteolysis. Methods in Enzymology, 1994, 233, 363-371.	1.0	145
59	Degradation of Damaged Proteins. Progress in Molecular Biology and Translational Science, 2012, 109, 227-248.	1.7	145
60	Adaptive homeostasis and the free radical theory of ageing. Free Radical Biology and Medicine, 2018, 124, 420-430.	2.9	142
61	Nrf2-regulated phase II enzymes are induced by chronic ambient nanoparticle exposure in young mice with age-related impairments. Free Radical Biology and Medicine, 2012, 52, 2038-2046.	2.9	136
62	The role of declining adaptive homeostasis in ageing. Journal of Physiology, 2017, 595, 7275-7309.	2.9	136
63	Hamsteradapt78mRNA Is a Down Syndrome Critical Region Homologue That Is Inducible by Oxidative Stress. Archives of Biochemistry and Biophysics, 1997, 342, 6-12.	3.0	135
64	Mitochondrial Lon protease in human disease and aging: Including an etiologic classification of Lon-related diseases and disorders. Free Radical Biology and Medicine, 2016, 100, 188-198.	2.9	129
65	Age-associated declines in mitochondrial biogenesis and protein quality control factors are minimized by exercise training. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R127-R134.	1.8	127
66	Mitochondrial NADH dehydrogenase-catalyzed oxygen radical production by adriamycin, and the relative inactivity of 5-iminodaunorubicin. FEBS Letters, 1983, 153, 227-230.	2.8	123
67	Protein modification by oxidants and the role of proteolytic enzymes. Biochemical Society Transactions, 1993, 21, 346-353.	3.4	123
68	Upregulation of the mitochondrial Lon Protease allows adaptation to acute oxidative stress but dysregulation is associated with chronic stress, disease, and aging. Redox Biology, 2013, 1, 258-264.	9.0	123
69	The DSCR1 (Adapt78) isoform 1 protein calcipressin 1 inhibits calcineurin and protects against acute calciumâ€mediated stress damage, including transient oxidative stress. FASEB Journal, 2002, 16, 814-824.	0.5	121
70	Oxidized and Ubiquitinated Proteins May Predict Recovery of Postischemic Cardiac Function: Essential Role of the Proteasome. Antioxidants and Redox Signaling, 2005, 7, 538-546.	5.4	121
71	Amyloid-β Toxicity and Tau Hyperphosphorylation are Linked Via RCAN1 in Alzheimer's Disease. Journal of Alzheimer's Disease, 2011, 27, 701-709.	2.6	121
72	Differential roles of proteasome and immunoproteasome regulators Pa28αβ, Pa28γ and Pa200 in the degradation of oxidized proteins. Archives of Biochemistry and Biophysics, 2012, 523, 181-190.	3.0	119

#	Article	IF	CITATIONS
73	Regulatory Mechanisms Controlling Expression of the <i>DAN</i> /i>/ <i>TIR</i> Mannoprotein Genes During Anaerobic Remodeling of the Cell Wall in <i>Saccharomyces cerevisiae</i> . Genetics, 2001, 157, 1169-1177.	2.9	118
74	Down-regulation of Mammalian Mitochondrial RNAs During Oxidative Stress. Free Radical Biology and Medicine, 1997, 22, 551-559.	2.9	113
75	Aging-related decline in the induction of Nrf2-regulated antioxidant genes in human bronchial epithelial cells. Redox Biology, 2018, 14, 35-40.	9.0	113
76	The role of oxidative stress in anxiety disorder: cause or consequence?. Free Radical Research, 2018, 52, 737-750.	3.3	112
77	Potential roles of hypochlorous acid and N-chloroamines in collagen breakdown by phagocytic cells in synovitis. Free Radical Biology and Medicine, 1993, 15, 637-643.	2.9	111
78	Hydrogen peroxide production by red blood cells. Free Radical Biology and Medicine, 1994, 16, 123-129.	2.9	109
79	Mitochondrial Lon protease is a human stress protein. Free Radical Biology and Medicine, 2009, 46, 1042-1048.	2.9	108
80	Aggregates of oxidized proteins (lipofuscin) induce apoptosis through proteasome inhibition and dysregulation of proapoptotic proteins. Free Radical Biology and Medicine, 2005, 38, 1093-1101.	2.9	107
81	Conservation of vitamin C by uric acid in blood. Journal of Free Radicals in Biology & Medicine, 1985, 1, 117-124.	2.1	105
82	Proteasome Inhibition and Aggresome Formation in Sporadic Inclusion-Body Myositis and in Amyloid-Î ² Precursor Protein-Overexpressing Cultured Human Muscle Fibers. American Journal of Pathology, 2005, 167, 517-526.	3.8	105
83	Multiple roles of the DSCR1 (Adapt78 or RCAN1) gene and its protein product Calcipressin 1 (or RCAN1) in disease. Cellular and Molecular Life Sciences, 2005, 62, 2477-2486.	5.4	103
84	Protein oxidation and degradation during postmitotic senescence. Free Radical Biology and Medicine, 2005, 39, 1208-1215.	2.9	97
85	Oxidative stress adaptation with acute, chronic, and repeated stress. Free Radical Biology and Medicine, 2013, 55, 109-118.	2.9	96
86	Importance of the Lon Protease in Mitochondrial Maintenance and the Significance of Declining Lon in Aging. Annals of the New York Academy of Sciences, 2007, 1119, 78-87.	3.8	94
87	Protein degradation in mitochondria: implications for oxidative stress, aging and disease:. Mitochondrion, 2001, 1, 33-49.	3.4	92
88	The molecular chaperone Hsp70 promotes the proteolytic removal of oxidatively damaged proteins by the proteasome. Free Radical Biology and Medicine, 2016, 99, 153-166.	2.9	92
89	Superoxide dismutase is preferentially degraded by a proteolytic system from red blood cells following oxidative modification by hydrogen peroxide. Free Radical Biology and Medicine, 1988, 5, 335-339.	2.9	91
90	Mechanism of the Formation and Proteolytic Release of H2O2-induced Dityrosine and Tyrosine Oxidation Products in Hemoglobin and Red Blood Cells. Journal of Biological Chemistry, 2001, 276, 24129-24136.	3.4	89

#	Article	IF	CITATIONS
91	A conserved role for the 20S proteasome and <i>Nrf2</i> transcription factor in oxidative-stress adaptation in mammals, <i>C. elegans</i> and <i>D. melanogaster</i> . Journal of Experimental Biology, 2013, 216, 543-53.	1.7	85
92	Redox Regulation of Homeostasis and Proteostasis in Peroxisomes. Physiological Reviews, 2018, 98, 89-115.	28.8	79
93	Resveratrol enhances exercise training responses in rats selectively bred for high running performance. Food and Chemical Toxicology, 2013, 61, 53-59.	3.6	75
94	Lens proteasome shows enhanced rates of degradation of hydroxyl radical modified alpha-crystallin. Free Radical Biology and Medicine, 1990, 8, 217-222.	2.9	74
95	Adaptive Response and Oxidative Stress. Environmental Health Perspectives, 1994, 102, 25.	6.0	74
96	The Proteasome and Oxidative Stress in Alzheimer's Disease. Antioxidants and Redox Signaling, 2016, 25, 886-901.	5.4	74
97	Glutathiolation of the Proteasome Is Enhanced by Proteolytic Inhibitors. Archives of Biochemistry and Biophysics, 2001, 389, 254-263.	3.0	73
98	Induction and repression of DAN1 and the family of anaerobic mannoprotein genes in Saccharomyces cerevisiae occurs through a complex array of regulatory sites. Nucleic Acids Research, 2001, 29, 799-808.	14.5	73
99	Preferential degradation of oxidized proteins by the 20S proteasome may be inhibited in aging and in inflammatory neuromuscular diseases. Neurology, 2006, 66, S93-S96.	1.1	73
100	The Immunoproteasome in oxidative stress, aging, and disease. Critical Reviews in Biochemistry and Molecular Biology, 2016, 51, 268-281.	5.2	72
101	Proteasome inhibitors induce intracellular protein aggregation and cell death by an oxygen-dependent mechanism. FEBS Letters, 2003, 542, 89-94.	2.8	71
102	Optimal determination of heart tissue 26S-proteasome activity requires maximal stimulating ATP concentrations. Journal of Molecular and Cellular Cardiology, 2007, 42, 265-269.	1.9	71
103	Tau protein degradation is catalyzed by the ATP/ubiquitin-independent 20S proteasome under normal cell conditions. Archives of Biochemistry and Biophysics, 2010, 500, 181-188.	3.0	71
104	Atherosclerosis: another protein misfolding disease?. Trends in Molecular Medicine, 2002, 8, 370-374.	6.7	69
105	RCAN1-1L is overexpressed in neurons of Alzheimer's disease patients. FEBS Journal, 2007, 274, 1715-1724.	4.7	68
106	Sex differences in the response to oxidative and proteolytic stress. Redox Biology, 2020, 31, 101488.	9.0	68
107	Chronic Expression of RCAN1-1L Protein Induces Mitochondrial Autophagy and Metabolic Shift from Oxidative Phosphorylation to Glycolysis in Neuronal Cells. Journal of Biological Chemistry, 2012, 287, 14088-14098.	3.4	66
108	[30] Hydrogen peroxide-mediated ferrylhemoglobin generation in Vitro and in red blood cells. Methods in Enzymology, 1994, 231, 490-496.	1.0	64

#	Article	IF	CITATIONS
109	Cigarette smoke extract stimulates epithelial–mesenchymal transition through Src activation. Free Radical Biology and Medicine, 2012, 52, 1437-1442.	2.9	61
110	Exercise bioenergetics following sprint training. Archives of Biochemistry and Biophysics, 1982, 215, 260-265.	3.0	60
111	The Oxygen Paradox, the French Paradox, and age-related diseases. GeroScience, 2017, 39, 499-550.	4.6	59
112	Free radicals and exercise: An introduction. Free Radical Biology and Medicine, 2008, 44, 123-125.	2.9	58
113	Effects of dietary iron deficiency on iron-sulfur proteins and bioenergetic functions of skeletal muscle mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 1982, 679, 210-220.	1.0	55
114	Oxidative stress induces the levels of a MAFG homolog in hamster HA-1 cells. Free Radical Biology and Medicine, 1996, 21, 521-525.	2.9	55
115	RCAN1 (DSCR1 or Adapt78)* stimulates expression of GSK-3beta. FEBS Journal, 2006, 273, 2100-2109.	4.7	54
116	Hydrogen Peroxide Induces the Expression ofadapt15,a Novel RNA Associated with Polysomes in Hamster HA-1 Cells. Archives of Biochemistry and Biophysics, 1996, 325, 256-264.	3.0	51
117	The DAN1 gene of S. cerevisiae is regulated in parallel with the hypoxic genes, but by a different mechanism. Gene, 1997, 192, 199-205.	2.2	50
118	Potential roles of protein oxidation and the immunoproteasome in MHC class I antigen presentation: the â€~PrOxl' hypothesis. Archives of Biochemistry and Biophysics, 2004, 423, 88-96.	3.0	50
119	Impairment of Lon-Induced Protection Against the Accumulation of Oxidized Proteins in Senescent Wi-38 Fibroblasts. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2011, 66A, 1178-1185.	3.6	49
120	16S Mitochondrial Ribosomal RNA Degradation Is Associated with Apoptosis. Free Radical Biology and Medicine, 1997, 22, 1295-1300.	2.9	48
121	Exercise improves import of 8-oxoguanine DNA glycosylase into the mitochondrial matrix of skeletal muscle and enhances the relative activity. Free Radical Biology and Medicine, 2009, 46, 238-243.	2.9	48
122	Transit of H2O2 across the endoplasmic reticulum membrane is not sluggish. Free Radical Biology and Medicine, 2016, 94, 157-160.	2.9	48
123	The age- and sex-specific decline of the 20s proteasome and the Nrf2/CncC signal transduction pathway in adaption and resistance to oxidative stress in Drosophila melanogaster. Aging, 2017, 9, 1153-1185.	3.1	46
124	An Overview of Oxidative Stress. IUBMB Life, 2000, 50, 241-244.	3.4	44
125	Do RCAN1 proteins link chronic stress with neurodegeneration?. FASEB Journal, 2011, 25, 3306-3311.	0.5	44
126	Influence of DNA Binding on the Degradation of Oxidized Histones by the 20S Proteasome. Archives of Biochemistry and Biophysics, 1999, 362, 211-216.	3.0	43

#	Article	IF	CITATIONS
127	adapt78, a Stress-Inducible mRNA, Is Related to the Glucose-Regulated Protein Family of Genes. Archives of Biochemistry and Biophysics, 1999, 368, 67-74.	3.0	43
128	The peroxisomal <scp>L</scp> on protease <scp>LonP2</scp> in aging and disease: functions and comparisons with mitochondrial <scp>L</scp> on protease <scp>LonP1</scp> . Biological Reviews, 2017, 92, 739-753.	10.4	43
129	Sex-specific stress tolerance, proteolysis, and lifespan in the invertebrate Tigriopus californicus. Experimental Gerontology, 2019, 119, 146-156.	2.8	43
130	Comparative cardiac oxygen radical metabolism by anthracycline antibiotics, mitoxantrone, bisantrene, 4'-(9-acridinylamino)-methanesulfon-m-anisidide, and neocarzinostatin. Biochemical Pharmacology, 1983, 32, 2935-2939.	4.4	42
131	Oxidant-Inducibleadapt15RNA Is Associated with Growth Arrest- and DNA Damage-Induciblegadd153andgadd45. Archives of Biochemistry and Biophysics, 1996, 329, 137-144.	3.0	42
132	Regulator of Calcineurin (RCAN1-1L) Is Deficient in Huntington Disease and Protective against Mutant Huntingtin Toxicity in Vitro. Journal of Biological Chemistry, 2009, 284, 11845-11853.	3.4	42
133	Translational Perspective on the Role of Testosterone in Sexual Function and Dysfunction. Journal of Sexual Medicine, 2016, 13, 1183-1198.	0.6	42
134	Ubisemiquinone radicals in liver: Implications for a mitochondrial Q cycle in vivo. Biochemical and Biophysical Research Communications, 1982, 107, 1292-1299.	2.1	41
135	adapt33,a Novel Oxidant-Inducible RNA from Hamster HA-1 Cells. Archives of Biochemistry and Biophysics, 1996, 332, 255-260.	3.0	41
136	Mitochondrial biogenesis-associated factors underlie the magnitude of response to aerobic endurance training in rats. Pflugers Archiv European Journal of Physiology, 2015, 467, 779-788.	2.8	41
137	Proteasome-Dependent Turnover of Protein Disulfide Isomerase in Oxidatively Stressed Cells. Archives of Biochemistry and Biophysics, 2002, 397, 407-413.	3.0	40
138	The Oxygen Paradox, oxidative stress, and ageing. Archives of Biochemistry and Biophysics, 2016, 595, 28-32.	3.0	40
139	Oxidative stress causes a general, calcium-dependent degradation of mitochondrial polynucleotides. Free Radical Biology and Medicine, 1998, 25, 1106-1111.	2.9	38
140	Ezrin turnover and cell shape changes catalyzed by proteasome in oxidatively stressed cells. FASEB Journal, 2002, 16, 1602-1610.	0.5	38
141	Sexual Dimorphism and Aging Differentially Regulate Adaptive Homeostasis. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 141-149.	3.6	38
142	DSCR1(Adapl78) modulates expression of SOD1. FASEB Journal, 2004, 18, 62-69.	0.5	37
143	Is vitamin E an antioxidant, a regulator of signal transduction and gene expression, or a â€~junk' food? Comments on the two accompanying papers: "Molecular mechanism of α-tocopherol action―by A. Azzi and "Vitamin E, antioxidant and nothing more―by M. Traber and J. Atkinson. Free Radical Biology and Medicine. 2007. 43. 2-3.	2.9	37
144	Aging attenuates redox adaptive homeostasis and proteostasis in female mice exposed to traffic-derived nanoparticles (†vehicular smog'). Free Radical Biology and Medicine, 2018, 121, 86-97.	2.9	36

#	Article	IF	CITATIONS
145	Polynucleotide degradation during early stage response to oxidative stress is specific to mitochondria. Free Radical Biology and Medicine, 2000, 28, 281-288.	2.9	33
146	The Measurement of Protein Degradation in Response to Oxidative Stress. , 2000, 99, 49-60.		32
147	Cytotoxic effect of doxycycline and its implications for tet-on gene expression systems. Analytical Biochemistry, 2003, 318, 152-154.	2.4	32
148	Diminished stress resistance and defective adaptive homeostasis in age-related diseases. Clinical Science, 2017, 131, 2573-2599.	4.3	32
149	Competition of nuclear factor-erythroid 2 factors related transcription factor isoforms, Nrf1 and Nrf2, in antioxidant enzyme induction. Redox Biology, 2013, 1, 183-189.	9.0	31
150	[16] Assessing gene expression during oxidative stress. Methods in Enzymology, 1994, 234, 175-217.	1.0	30
151	TGFβ1 rapidly activates Src through a non-canonical redox signaling mechanism. Archives of Biochemistry and Biophysics, 2015, 568, 1-7.	3.0	30
152	Aging and SKN-1-dependent Loss of 20S Proteasome Adaptation to Oxidative Stress inC. elegans. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 143-151.	3.6	30
153	Manganese Superoxide Dismutase Modulates Interleukin-1α Levels in HT-1080 Fibrosarcoma Cells. Journal of Biological Chemistry, 1996, 271, 18898-18903.	3.4	29
154	An Overview of Oxidative Stress. IUBMB Life, 2000, 50, 241-244.	3.4	29
155	SIRT1 may play a crucial role in overloadâ€induced hypertrophy of skeletal muscle. Journal of Physiology, 2017, 595, 3361-3376.	2.9	29
156	To adapt or not to adapt: Consequences of declining Adaptive Homeostasis and Proteostasis with age. Mechanisms of Ageing and Development, 2019, 177, 80-87.	4.6	27
157	Protein Oxidation and Proteolytic Degradation General Aspects and Relationship to Cataract Formation. Advances in Experimental Medicine and Biology, 1990, 264, 503-511.	1.6	26
158	Chronic high levels of the RCAN1-1 protein may promote neurodegeneration and Alzheimer disease. Free Radical Biology and Medicine, 2013, 62, 47-51.	2.9	24
159	COVID-19 during Pregnancy and Postpartum:. Journal of Dietary Supplements, 2022, 19, 115-142.	2.6	24
160	Resveratrol Attenuates Exercise-Induced Adaptive Responses in Rats Selectively Bred for Low Running Performance. Dose-Response, 2014, 12, dose-response.1.	1.6	22
161	Modulation of a cardiogenic shock inducible RNA by chemical stress: adapt 73/PigHep3. Surgery, 1997, 121, 581-587.	1.9	21
162	The evolution of : A 20-year history. Free Radical Biology and Medicine, 2005, 39, 1263-1264.	2.9	21

#	Article	IF	CITATIONS
163	Inhibition of Collagenase Activity byN-Chlorotaurine, a Product of Activated Neutrophils. Arthritis and Rheumatism, 1994, 37, 424-427.	6.7	20
164	DSCR1(Adapt78)A Janus Gene Providing Stress Protection but Causing Alzheimer's Disease?. IUBMB Life, 2003, 55, 29-31.	3.4	20
165	Decreased SIRT1 deacetylase activity in sporadic inclusion-body myositis muscle fibers. Neurobiology of Aging, 2010, 31, 1637-1648.	3.1	20
166	Does Bach1 & c-Myc dependent redox dysregulation of Nrf2 & adaptive homeostasis decrease cancer risk in ageing?. Free Radical Biology and Medicine, 2019, 134, 708-714.	2.9	19
167	A simple fluorescence labeling method for studies of protein oxidation, protein modification, and proteolysis. Free Radical Biology and Medicine, 2012, 52, 239-246.	2.9	17
168	Limitations to adaptive homeostasis in an hyperoxia-induced model of accelerated ageing. Redox Biology, 2019, 24, 101194.	9.0	17
169	Silencing Bach1 alters aging-related changes in the expression of Nrf2-regulated genes in primary human bronchial epithelial cells. Archives of Biochemistry and Biophysics, 2019, 672, 108074.	3.0	16
170	COVID-19 during Pregnancy and Postpartum:. Journal of Dietary Supplements, 2022, 19, 78-114.	2.6	16
171	Characterization of <1>adapt33 1 , a Stress-Inducible Riboregulator. Gene Expression, 2003, 11, 85-94.	1.2	15
172	Vitamin E deficiency and photosensitization of electron-transport carriers in microsomes. FEBS Letters, 1982, 139, 241-244.	2.8	12
173	Gene expression in Alzheimer's disease. Drugs of Today, 2002, 38, 509.	2.4	12
174	Genetic Aberrations in Chernobyl-Related Thyroid Cancers: Implications for Possible Future Nuclear Accidents or Nuclear Attacks. IUBMB Life, 2003, 55, 637-641.	3.4	11
175	The calcineurin antagonist RCAN1-4 is induced by exhaustive exercise in rat skeletal muscle. Free Radical Biology and Medicine, 2015, 87, 290-299.	2.9	11
176	Sexual dimorphism in oxidant-induced adaptive homeostasis in multiple wild-type D. melanogaster strains. Archives of Biochemistry and Biophysics, 2017, 636, 57-70.	3.0	11
177	Cardiovascular Adaptive Homeostasis in Exercise. Frontiers in Physiology, 2018, 9, 369.	2.8	11
178	Analysis of Gene Expression Following Oxidative Stress. , 2002, 196, 155-162.		10
179	Redox Regulation of Gene Expression. , 2000, , 21-45.		8
180	The essential role of calcium in induction of the DSCR1 (ADAPT78) gene. BioFactors, 2001, 15, 91-93.	5.4	8

#	Article	IF	CITATIONS
181	Down regulation of glutathione and glutamate cysteine ligase in the inflammatory response of macrophages. Free Radical Biology and Medicine, 2020, 158, 53-59.	2.9	8
182	Reactive oxygen and nitrogen species in neurodegeneration. Free Radical Biology and Medicine, 2013, 62, 1-3.	2.9	7
183	OXIDATIVE DAMAGE & REPAIR: INTRODUCTION AND OVERVIEW. , 1991, , xvii-xxvii.		7
184	Sex-specific adaptive homeostasis in D. melanogaster depends on increased proteolysis by the 20S Proteasome: Data-in-Brief. Data in Brief, 2018, 17, 653-661.	1.0	6
185	A Secondary Antioxidant Defense Role for Proteolytic Systems. , 1988, 49, 575-585.		6
186	Differential display: a critical analysis. Gene Expression, 2002, 10, 101-7.	1.2	6
187	Measuring redox effects on the activities of intracellular proteases such as the 20S Proteasome and the Immuno-Proteasome with fluorogenic peptides. Free Radical Biology and Medicine, 2019, 143, 16-24.	2.9	5
188	Lactoferrin for Mental Health: Neuro-Redox Regulation and Neuroprotective Effects across the Blood-Brain Barrier with Special Reference to Neuro-COVID-19. Journal of Dietary Supplements, 2023, 20, 218-253.	2.6	5
189	Free radicals and redox regulation in ageing. Free Radical Biology and Medicine, 2019, 134, 688-689.	2.9	4
190	The oxygen society and SFRR international. Free Radical Biology and Medicine, 1989, 6, 1-2.	2.9	3
191	The radical view: Young investigator award in free radical biology and medicine. Free Radical Biology and Medicine, 1987, 3, 311-312.	2.9	2
192	Oxidative Defense Mechanisms. , 2002, , 679-689.		2
193	The evolution of Free Radical Biology & Medicine: Still radical after a quarter of a century!. Free Radical Biology and Medicine, 2010, 49, 1825-1833.	2.9	2
194	Acute Electrical Pulse Stimulation and Hyperglycemia Regulates RCAN1-4 in C2C12 myotubes through Oxidative Stress. Free Radical Biology and Medicine, 2014, 75, S29.	2.9	2
195	RasGrf1 and Aging. Aging, 2011, 3, 455-455.	3.1	2
196	Bacterial Killing by Phagocytes: Potential Role(s) of Hypochlorous Acid and Hydrogen Peroxide in Protein Turnover, DNA Synthesis, and RNA Synthesis. , 1988, 49, 829-832.		2
197	The radical view. Free Radical Biology and Medicine, 1989, 6, 121-122.	2.9	1
198	What Goes Wrong with Lon in Ageing?. Free Radical Biology and Medicine, 2014, 75, S6.	2.9	1

#	Article	IF	CITATIONS
199	Commentary on "Bach1 differentially regulates distinct Nrf2-dependent genes in human venous and coronary artery endothelial cells adapted to physiological oxygen levels―by Chapple et al Free Radical Biology and Medicine, 2016, 92, 163-164.	2.9	1
200	The proteasome beta 5 subunit is essential for sexually divergent adaptive homeostatic responses to oxidative stress in D. melanogaster. Free Radical Biology and Medicine, 2020, 160, 67-77.	2.9	1
201	The Stabilization of Ascorbic Acid by Uric Acid. Advances in Experimental Medicine and Biology, 1986, 195 Pt A, 325-327.	1.6	1
202	Possible Importance of Proteolytic Systems as Secondary Antioxidant Defenses During Ischemia-Reperfusion Injury. , 1988, , 169-185.		1
203	The Measurement of Protein Degradation in Response to Oxidative Stress. , 1988, 49, 531-535.		1
204	Constitutive and Inducible Repair Systems in Oxidative Stress. , 1990, , 929-952.		1
205	SELECTIVE PROTEOLYSIS OF OXIDATIVELY MODIFIED PROTEINS BY MACROXYPROTEINASE (M.O.P.). , 1991, , 364-372.		1
206	It's getting better all the time. Free Radical Biology and Medicine, 1989, 7, 115-116.	2.9	0
207	A proposal to limit the proliferation of major meetings. Free Radical Biology and Medicine, 1991, 11, v.	2.9	0
208	The radical view. Free Radical Biology and Medicine, 1993, 15, vii-viii.	2.9	0
209	Lipid peroxidation, phospholipases, lipoprotein oxidation, and atherosclerosis: A tribute to Professor Alex Sevanian (1946–2005). Free Radical Biology and Medicine, 2005, 39, 705-710.	2.9	0
210	AN ANTIOXIDANT ROLE FOR HEMOGLOBIN. , 1991, , 87-92.		0
211	Repair Systems and Inducible Defenses against Oxidant Stress. , 1998, , 253-266.		0
212	The "birth" of Life. IUBMB Life, 1999, 48, 3-3.	3.4	0