Yuliang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/133562/publications.pdf

Version: 2024-02-01

		3721	5519
318	29,466	89	163
papers	citations	h-index	g-index
222	222	222	19100
333	333	333	18190
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Controlled Growth Interface of Charge Transfer Salts of Nickel-7,7,8,8-Tetracyanoquinodimethane on Surface of Graphdiyne. CCS Chemistry, 2023, 5, 971-981.	4.6	47
2	Controlled Growth and Selfâ€Assembly of Multiscale Organic Semiconductor. Advanced Materials, 2022, 34, e2102811.	11.1	24
3	High-loading metal atoms on graphdiyne for efficient nitrogen fixation to ammonia. Journal of Materials Chemistry A, 2022, 10, 6073-6077.	5.2	18
4	Graphdiyneâ€Induced Iron Vacancy for Efficient Nitrogen Conversion. Advanced Science, 2022, 9, e2102721.	5.6	28
5	Controlling precise voids in the ion-selective carbon shell for zero-strain electrode. Energy Storage Materials, 2022, 45, 110-118.	9.5	8
6	Stabilizing Interface pH by Nâ€Modified Graphdiyne for Dendriteâ€Free and Highâ€Rate Aqueous Znâ€Ion Batteries. Angewandte Chemie, 2022, 134, .	1.6	24
7	Stabilizing Interface pH by Nâ€Modified Graphdiyne for Dendriteâ€Free and Highâ€Rate Aqueous Znâ€Ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	124
8	Selfâ€Expanding Ionâ€Transport Channels on Anodes for Fastâ€Charging Lithiumâ€Ion Batteries. Angewandte Chemie, 2022, 134, .	1.6	8
9	1D Nanowire Heterojunction Electrocatalysts of MnCo ₂ O ₄ /GDY for Efficient Overall Water Splitting. Advanced Functional Materials, 2022, 32, .	7.8	48
10	Selfâ€Expanding Ionâ€Transport Channels on Anodes for Fastâ€Charging Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2022, 61, e202113313.	7.2	46
11	Highly Dispersed Platinum Chlorine Atoms Anchored on Gold Quantum Dots for a Highly Efficient Electrocatalyst. Journal of the American Chemical Society, 2022, 144, 1921-1928.	6.6	88
12	Rýcktitelbild: Selfâ€Expanding Ionâ€Transport Channels on Anodes for Fastâ€Charging Lithiumâ€lon Batteries (Angew. Chem. 7/2022). Angewandte Chemie, 2022, 134, .	1.6	3
13	Electronic structure modulation of metal-free graphdiyne for acidic oxygen evolution reaction. 2D Materials, 2022, 9, 014008.	2.0	3
14	Selectively Growing a Highly Active Interface of Mixed Nb–Rh Oxide/2D Carbon for Electrocatalytic Hydrogen Production. Advanced Science, 2022, 9, e2104706.	5.6	15
15	Atomic alloys of nickel-platinum on carbon network for methanol oxidation. Nano Energy, 2022, 95, 106984.	8.2	31
16	Controlled Growth of Donor–Bridge–Acceptor Interface for Highâ€Performance Ammonia Production. Small, 2022, 18, e2107136.	5.2	11
17	Controlled Growth of Singleâ€Crystal Pd Quantum Dots on 2D Carbon for Large Current Density Hydrogen Evolution. Advanced Functional Materials, 2022, 32, .	7.8	19
18	Uniform single atomic Cu1-C4 sites anchored in graphdiyne for hydroxylation of benzene to phenol. National Science Review, 2022, 9, .	4.6	22

#	Article	lF	CITATIONS
19	An integrated interfacial engineering for efficiently confining the asymmetric strain in scalable silicon anode. Journal of Power Sources, 2022, 524, 231086.	4.0	3
20	2D graphdiyne: an emerging carbon material. Chemical Society Reviews, 2022, 51, 2681-2709.	18.7	225
21	Large-scale CuS nanotube arrays@graphdiyne for high-performance sodium ion battery. 2D Materials, 2022, 9, 025024.	2.0	11
22	Graphdiyne oxide doping for aggregation control of hole-transport nanolayer in inverted perovskite solar cells. Nano Research, 2022, 15, 9734-9740.	5.8	8
23	Conversion of Interfacial Chemical Bonds for Inducing Efficient Photoelectrocatalytic Water Splitting. ACS Materials Au, 2022, 2, 321-329.	2.6	4
24	Highly Loaded Independent Pt ⁰ Atoms on Graphdiyne for pHâ€General Methanol Oxidation Reaction. Advanced Science, 2022, 9, e2104991.	5.6	26
25	Highly selective and durable of monodispersed metal atoms in ammonia production. Nano Today, 2022, 43, 101431.	6.2	27
26	sp-carbon-enabled interface for high-performance graphite anode. Nano Today, 2022, 44, 101478.	6.2	13
27	Loading Nickel Atoms on GDY for Efficient CO2 Fixation and Conversion. Chemical Research in Chinese Universities, 2022, 38, 92-98.	1.3	8
28	Controlled Growth of 3D Interpenetrated Networks by NiCo ₂ O ₄ and Graphdiyne for High-Performance Supercapacitor. ACS Applied Materials & Diterfaces, 2022, 14, 18283-18292.	4.0	17
29	Separation of acetylene, ethylene and ethane over single layered graphdiyne membranes: Performance and insights from quantum mechanical views. Journal of Environmental Chemical Engineering, 2022, 10, 107733.	3.3	2
30	Bismuth/Graphdiyne Heterostructure for Electrocatalytic Conversion of CO2 to Formate. Chemical Research in Chinese Universities, 2022, 38, 1380-1386.	1.3	6
31	Interfacial Evolution of the Solid Electrolyte Interphase and Lithium Deposition in Graphdiyne-Based Lithium-Ion Batteries. Journal of the American Chemical Society, 2022, 144, 9354-9362.	6.6	30
32	Controlled Growth of the Interface of CdWO <i>_x</i> /GDY for Hydrogen Energy Conversion. Advanced Functional Materials, 2022, 32, .	7.8	21
33	Graphdiyne Nanospheres as a Wettability and Electron Modifier for Enhanced Hydrogenation Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	22
34	A new carbon allotrope: graphdiyne. Trends in Chemistry, 2022, 4, 754-768.	4.4	35
35	Research of Low-Dimensional Carbon-Based Magnetic Materials. ACS Applied Electronic Materials, 2022, 4, 3263-3277.	2.0	8
36	Gas permeation through graphdiyne-based nanoporous membranes. Nature Communications, 2022, 13, .	5.8	15

#	Article	IF	Citations
37	Chemical bond conversion directly drives power generation on the surface of graphdiyne. Matter, 2022, 5, 2933-2945.	5.0	10
38	Graphdiyne@Janus Magnetite for Photocatalytic Nitrogen Fixation. Angewandte Chemie, 2021, 133, 3207-3211.	1.6	46
39	Graphdiyne@Janus Magnetite for Photocatalytic Nitrogen Fixation. Angewandte Chemie - International Edition, 2021, 60, 3170-3174.	7.2	174
40	Graphdiyne-based metal atomic catalysts for synthesizing ammonia. National Science Review, 2021, 8, nwaa213.	4.6	110
41	Graphdiyne@NiO _x (OH) _y heterostructure for efficient overall water splitting. Materials Chemistry Frontiers, 2021, 5, 5305-5311.	3.2	13
42	Photoactive conjugated polymer/graphdiyne nanocatalyst for CO ₂ reduction to CO in living cells for hypoxia tumor treatment. Materials Chemistry Frontiers, 2021, 5, 5841-5845.	3.2	11
43	2D carbon graphdiyne: Fundamentals and applications. , 2021, , 461-516.		1
44	Controllable growth of graphdiyne layered nanosheets for high-performance water oxidation. Materials Chemistry Frontiers, 2021, 5, 4153-4159.	3.2	19
45	Graphdiyne Visibleâ€Light Photodetector with Ultrafast Detectivity. Advanced Optical Materials, 2021, 9, 2001916.	3.6	25
46	Graphdiyne Ultrathin Nanosheets for Efficient Water Splitting. Advanced Functional Materials, 2021, 31, 2010112.	7.8	35
47	Selfâ€Validated Machine Learning Study of Graphdiyneâ€Based Dual Atomic Catalyst. Advanced Energy Materials, 2021, 11, 2003796.	10.2	57
48	Efficient Hydrogen Evolution on Nanoscale Graphdiyne. Small, 2021, 17, e2006136.	5.2	36
49	Photoinduced Electrocatalysis on 3D Flexible OsO <i>_x</i> Quantum Dots. Advanced Energy Materials, 2021, 11, 2100234.	10.2	50
50	Flexible Organic Solar Cells: Progress and Challenges. Small Science, 2021, 1, 2100001.	5.8	94
51	Hydrogen Evolution Reaction: Photoinduced Electrocatalysis on 3D Flexible OsO <i></i> Quantum Dots (Adv. Energy Mater. 18/2021). Advanced Energy Materials, 2021, 11, 2170071.	10.2	1
52	Graphdiyne oxide and graphene oxide sense monovalent cations differently: The alkyne and alkene physicochemistry. Nano Today, 2021, 38, 101141.	6.2	7
53	Acidic Water Oxidation on Quantum Dots of IrO _x /Graphdiyne. Advanced Energy Materials, 2021, 11, 2101138.	10.2	54
54	Porous 3D Siliconâ€Diamondyne Blooms Excellent Storage and Diffusion Properties for Li, Na, and K lons. Advanced Energy Materials, 2021, 11, 2101197.	10.2	35

#	Article	IF	CITATIONS
55	Synthesis and Application of Graphdiyne Oxide-Polyurethane Nanocomposite Yield a Highly Sensitive Non-Enzyme Glucose Sensor. Journal of the Electrochemical Society, 2021, 168, 077520.	1.3	5
56	The Underlying Function and Structural Organization of the Intracellular Protein Corona on Graphdiyne Oxide Nanosheet for Local Immunomodulation. Nano Letters, 2021, 21, 6005-6013.	4.5	63
57	High Voltageâ€Stabilized Graphdiyne Cathode Interface. Small, 2021, 17, e2102066.	5.2	18
58	Preparation of triphenyl-amine graphdiyne with concomitant assembled morphology and its application for lithium-ion storage. 2D Materials, 2021, 8, 044005.	2.0	7
59	Selective Conversion of CO ₂ into Cyclic Carbonate on Atom Level Catalysts. ACS Materials Au, 2021, 1, 107-115.	2.6	15
60	Proton selective anode nanochannel for efficient methanol utilization. Nano Today, 2021, 39, 101213.	6.2	22
61	A metal-free graphdiyne material for highly efficient oxidation of benzene to phenol. 2D Materials, 2021, 8, 044004.	2.0	4
62	Nitrogen-doped graphdiyne for effective metal deposition and heterogeneous Suzuki-Miyaura coupling catalysis. Applied Catalysis A: General, 2021, 623, 118244.	2.2	11
63	Graphdiyne-based flexible respiration sensors for monitoring human health. Nano Today, 2021, 39, 101214.	6.2	66
64	Bimetallic Mixed Clusters Highly Loaded on Porous 2D Graphdiyne for Hydrogen Energy Conversion. Advanced Science, 2021, 8, e2102777.	5.6	27
65	Graphdiyne/CdSe quantum dot heterostructure for efficient photoelectrochemical water oxidation. 2D Materials, 2021, 8, 044017.	2.0	7
66	2D Graphdiyne: A Rising Star on the Horizon of Energy Conversion. Chemistry - an Asian Journal, 2021, 16, 3259-3271.	1.7	8
67	Porous graphdiyne loading CoOx quantum dots for fixation nitrogen reaction. Nano Energy, 2021, 89, 106333.	8.2	47
68	Biodegradation of graphdiyne oxide in classically activated (M1) macrophages modulates cytokine production. Nanoscale, 2021, 13, 13072-13084.	2.8	12
69	Two-dimensional graphdiyne/metal hydroxide heterojunction for high-efficiency oxygen evolution reaction. Scientia Sinica Chimica, 2021, , .	0.2	2
70	Graphdiyne Based Atomic Catalyst: an Emerging Star for Energy Conversion. Chemical Research in Chinese Universities, 2021, 37, 1149-1157.	1.3	13
71	Nitrogen-rich Graphdiyne Film for Efficiently Suppressing the Methanol Crossover in Direct Methanol Fuel Cells. Chemical Research in Chinese Universities, 2021, 37, 1275-1282.	1.3	2
72	Graphdiyne nanostructure for high-performance lithium-sulfur batteries. Nano Energy, 2020, 68, 104307.	8.2	51

#	Article	IF	CITATIONS
73	Graphdiyne tubular micromotors: Electrosynthesis, characterization and self-propelled capabilities. Applied Materials Today, 2020, 20, 100743.	2.3	11
74	Unique structural advances of graphdiyne for energy applications. EnergyChem, 2020, 2, 100041.	10.1	48
75	Loading Copper Atoms on Graphdiyne for Highly Efficient Hydrogen Production. ChemPhysChem, 2020, 21, 2145-2149.	1.0	40
76	Graphdiyne Oxideâ€Based Highâ€Performance Rechargeable Aqueous Zn–MnO ₂ Battery. Advanced Functional Materials, 2020, 30, 2004115.	7.8	56
77	Spontaneously Splitting Copper Nanowires into Quantum Dots on Graphdiyne for Suppressing Lithium Dendrites. Advanced Materials, 2020, 32, e2004379.	11.1	74
78	Induced Ferromagnetic Order of Graphdiyne Semiconductors by Introducing a Heteroatom. ACS Central Science, 2020, 6, 950-958.	5. 3	38
79	Graphdiyne Interface Engineering: Highly Active and Selective Ammonia Synthesis. Angewandte Chemie, 2020, 132, 13121-13127.	1.6	15
80	Graphdiyne:Structure of Fluorescent Quantum Dots. Angewandte Chemie - International Edition, 2020, 59, 16712-16716.	7.2	79
81	Graphdiyne:Structure of Fluorescent Quantum Dots. Angewandte Chemie, 2020, 132, 16855.	1.6	7
82	Graphdiyne nanoradioprotector with efficient free radical scavenging ability for mitigating radiation-induced gastrointestinal tract damage. Biomaterials, 2020, 244, 119940.	5.7	58
83	2D graphdiyne loading ruthenium atoms for high efficiency water splitting. Nano Energy, 2020, 72, 104667.	8.2	91
84	Graphdiyne-templated palladium-nanoparticle assembly as a robust oxygen generator to attenuate tumor hypoxia. Nano Today, 2020, 34, 100907.	6.2	75
85	A highly selective and active metal-free catalyst for ammonia production. Nanoscale Horizons, 2020, 5, 1274-1278.	4.1	20
86	In Situ Coating Graphdiyne for Highâ€Energyâ€Density and Stable Organic Cathodes. Advanced Materials, 2020, 32, e2000140.	11.1	72
87	Accelerating Atomic Catalyst Discovery by Theoretical Calculationsâ€Machine Learning Strategy. Advanced Energy Materials, 2020, 10, 1903949.	10.2	99
88	Controllable Synthesis of Graphdiyne Nanoribbons. Angewandte Chemie, 2020, 132, 4938-4943.	1.6	14
89	Controllable Synthesis of Graphdiyne Nanoribbons. Angewandte Chemie - International Edition, 2020, 59, 4908-4913.	7.2	71
90	2D Inorganic Materials: from Atomic Crystals to Molecular Crystals. Chemical Research in Chinese Universities, 2020, 36, 147-148.	1.3	3

#	Article	IF	CITATIONS
91	Graphdiyne Derivative as Multifunctional Solid Additive in Binary Organic Solar Cells with 17.3% Efficiency and High Reproductivity. Advanced Materials, 2020, 32, e1907604.	11.1	309
92	Fundament and Application of Graphdiyne in Electrochemical Energy. Accounts of Chemical Research, 2020, 53, 459-469.	7.6	139
93	Graphdiyne Interface Engineering: Highly Active and Selective Ammonia Synthesis. Angewandte Chemie - International Edition, 2020, 59, 13021-13027.	7.2	154
94	Graphdiyne Micromotors in Living Biomedia. Chemistry - A European Journal, 2020, 26, 8471-8477.	1.7	14
95	DNA-Guided Room-Temperature Synthesis of Single-Crystalline Gold Nanostructures on Graphdiyne Substrates. ACS Central Science, 2020, 6, 779-786.	5. 3	15
96	Selfâ€assembly and tunable optical properties of intramolecular charge transfer molecules. Aggregate, 2020, 1, 57-68.	5.2	37
97	A dehydrobenzoannulene-based three dimensional graphdiyne for photocatalytic hydrogen generation using Pt nanoparticles as a co-catalyst and triethanolamine as a sacrificial electron donor. Journal of Materials Chemistry A, 2020, 8, 4850-4855.	5.2	26
98	A Universal Strategy for Constructing Seamless Graphdiyne on Metal Oxides to Stabilize the Electrochemical Structure and Interface. Advanced Materials, 2019, 31, e1806272.	11.1	59
99	Highâ€Yield and Damageâ€free Exfoliation of Layered Graphdiyne in Aqueous Phase. Angewandte Chemie, 2019, 131, 756-760.	1.6	10
100	Graphdiyne-Promoted Highly Efficient Photocatalytic Activity of Graphdiyne/Silver Phosphate Pickering Emulsion Under Visible-Light Irradiation. ACS Applied Materials & Emp; Interfaces, 2019, 11, 2684-2691.	4.0	64
101	Fluorographdiyne: A Metalâ€Free Catalyst for Applications in Water Reduction and Oxidation. Angewandte Chemie, 2019, 131, 14035-14041.	1.6	34
102	Fluorographdiyne: A Metalâ€Free Catalyst for Applications in Water Reduction and Oxidation. Angewandte Chemie - International Edition, 2019, 58, 13897-13903.	7.2	123
103	Chemical modification: Toward solubility and processability of graphdiyne. Nano Energy, 2019, 64, 103932.	8.2	34
104	Graphdiyne-engineered heterostructures for efficient overall water-splitting. Nano Energy, 2019, 64, 103928.	8.2	43
105	Graphdiyne with tunable activity towards hydrogen evolution reaction. Nano Energy, 2019, 63, 103874.	8.2	44
106	Largeâ€Area Aminatedâ€Graphdiyne Thin Films for Direct Methanol Fuel Cells. Angewandte Chemie - International Edition, 2019, 58, 15010-15015.	7.2	88
107	Graphdiyne: The Fundamentals and Application of an Emerging Carbon Material. Advanced Materials, 2019, 31, e1904885.	11.1	33
108	Electrochemical Energy Storage: Graphdiyneâ€Based Materials: Preparation and Application for Electrochemical Energy Storage (Adv. Mater. 42/2019). Advanced Materials, 2019, 31, 1970300.	11.1	20

#	Article	IF	Citations
109	Largeâ€Area Aminatedâ€Graphdiyne Thin Films for Direct Methanol Fuel Cells. Angewandte Chemie, 2019, 131, 15152-15157.	1.6	23
110	Ultrathin Nanosheet of Graphdiyne-Supported Palladium Atom Catalyst for Efficient Hydrogen Production. IScience, 2019, 11, 31-41.	1.9	149
111	Graphdiyneâ€Based Materials: Preparation and Application for Electrochemical Energy Storage. Advanced Materials, 2019, 31, e1803202.	11.1	136
112	2D Graphdiyne Oxide Serves as a Superior New Generation of Antibacterial Agents. IScience, 2019, 19, 662-675.	1.9	58
113	Highly Efficient and Selective Generation of Ammonia and Hydrogen on a Graphdiyne-Based Catalyst. Journal of the American Chemical Society, 2019, 141, 10677-10683.	6.6	474
114	Mapping of atomic catalyst on graphdiyne. Nano Energy, 2019, 62, 754-763.	8.2	64
115	Graphdiyne and its Assembly Architectures: Synthesis, Functionalization, and Applications. Advanced Materials, 2019, 31, e1803101.	11.1	214
116	Rationally engineered active sites for efficient and durable hydrogen generation. Nature Communications, 2019, 10, 2281.	5.8	59
117	Highly Lithiophilic Graphdiyne Nanofilm on 3D Free-Standing Cu Nanowires for High-Energy-Density Electrodes. ACS Applied Materials & Samp; Interfaces, 2019, 11, 17678-17685.	4.0	32
118	In situ growth of graphdiyne based heterostructure: Toward efficient overall water splitting. Nano Energy, 2019, 59, 591-597.	8.2	78
119	The electronic properties and magnetic states of edge-modified \hat{I}^3 -graphdiyne nanoribbons. Computational Materials Science, 2019, 163, 82-90.	1.4	15
120	Intensified C≡C Stretching Vibrator and Its Potential Role in Monitoring Ultrafast Energy Transfer in 2D Carbon Material by Nonlinear Vibrational Spectroscopy. Journal of Physical Chemistry Letters, 2019, 10, 1402-1410.	2.1	8
121	Emerging Electrochemical Energy Applications of Graphdiyne. Joule, 2019, 3, 899-903.	11.7	192
122	Xâ€Shaped Polycyclic Aromatic Hydrocarbons: Optical Properties and Tunable Assembly Ability. Chemistry - an Asian Journal, 2019, 14, 491-498.	1.7	1
123	Nanoindentation of thin graphdiyne films: Experiments and molecular dynamics simulation. Carbon, 2019, 144, 72-80.	5.4	28
124	Direct Synthesis of Crystalline Graphdiyne Analogue Based on Supramolecular Interactions. Journal of the American Chemical Society, 2019, 141, 48-52.	6.6	60
125	Efficient hydrogen generation on graphdiyne-based heterostructure. Nano Energy, 2019, 55, 135-142.	8.2	59
126	High‥ield and Damageâ€free Exfoliation of Layered Graphdiyne in Aqueous Phase. Angewandte Chemie - International Edition, 2019, 58, 746-750.	7.2	79

#	Article	IF	CITATIONS
127	Synthesis and Applications of Graphdiyneâ€Based Metalâ€Free Catalysts. Advanced Materials, 2019, 31, e1803762.	11.1	143
128	Ultrathin Graphdiyne-Wrapped Iron Carbonate Hydroxide Nanosheets toward Efficient Water Splitting. ACS Applied Materials & Splitting. ACS Applied Materials	4.0	73
129	Graphdiyne Nanoparticles with High Free Radical Scavenging Activity for Radiation Protection. ACS Applied Materials & Dr. Interfaces, 2019, 11, 2579-2590.	4.0	115
130	Ultrafastly Interweaving Graphdiyne Nanochain on Arbitrary Substrates and Its Performance as a Supercapacitor Electrode. ACS Applied Materials & Supercapacitor Electrode. ACS Applied Materials & Supercapacitor Electrode.	4.0	58
131	Graphdiyne Sponge for Direct Collection of Oils from Water. ACS Applied Materials & Samp; Interfaces, 2019, 11, 2591-2598.	4.0	85
132	Immobilized Ferrous Ion and Glucose Oxidase on Graphdiyne and Its Application on One-Step Glucose Detection. ACS Applied Materials & Interfaces, 2019, 11, 2647-2654.	4.0	86
133	Synthesis of Graphdiyne Film through Solution Phase Van der Waals Epitaxy. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2019, 35, 657-658.	2.2	2
134	High-performance graphdiyne-based electrochemical actuators. Nature Communications, 2018, 9, 752.	5.8	268
135	Carbon Atom Hybridization Matters: Ultrafast Humidity Response of Graphdiyne Oxides. Angewandte Chemie, 2018, 130, 3986-3990.	1.6	36
136	Multifunctional Singleâ€Crystallized Carbonate Hydroxides as Highly Efficient Electrocatalyst for Full Water splitting. Advanced Energy Materials, 2018, 8, 1800175.	10.2	101
137	Innenrýcktitelbild: Synthesis and Electronic Structure of Boronâ€Graphdiyne with an spâ€Hybridized Carbon Skeleton and Its Application in Sodium Storage (Angew. Chem. 15/2018). Angewandte Chemie, 2018, 130, 4169-4169.	1.6	7
138	Efficient Hydrogen Production on a 3D Flexible Heterojunction Material. Advanced Materials, 2018, 30, e1707082.	11.1	158
139	Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. Nature Communications, 2018, 9, 1460.	5.8	781
140	Carbon Atom Hybridization Matters: Ultrafast Humidity Response of Graphdiyne Oxides. Angewandte Chemie - International Edition, 2018, 57, 3922-3926.	7.2	159
141	Graphdiyne Nanosheet-Based Drug Delivery Platform for Photothermal/Chemotherapy Combination Treatment of Cancer. ACS Applied Materials & Samp; Interfaces, 2018, 10, 8436-8442.	4.0	130
142	Synthesis and Electronic Structure of Boronâ€Graphdiyne with an spâ€Hybridized Carbon Skeleton and Its Application in Sodium Storage. Angewandte Chemie, 2018, 130, 4032-4037.	1.6	47
143	Synthesis and Electronic Structure of Boronâ€Graphdiyne with an spâ€Hybridized Carbon Skeleton and Its Application in Sodium Storage. Angewandte Chemie - International Edition, 2018, 57, 3968-3973.	7.2	166
144	Improved electron transport in MAPbI3 perovskite solar cells based on dual doping graphdiyne. Nano Energy, 2018, 46, 331-337.	8.2	135

#	Article	IF	Citations
145	Controlled Synthesis of a Three-Segment Heterostructure for High-Performance Overall Water Splitting. ACS Applied Materials & ACS App	4.0	22
146	Controlled Growth of MoS ₂ Nanosheets on 2D Nâ€Doped Graphdiyne Nanolayers for Highly Associated Effects on Water Reduction. Advanced Functional Materials, 2018, 28, 1707564.	7.8	119
147	Graphdiyne: a superior carbon additive to boost the activity of water oxidation catalysts. Nanoscale Horizons, 2018, 3, 317-326.	4.1	116
148	Direct imaging and determination of the crystal structure of six-layered graphdiyne. Nano Research, 2018, 11, 1714-1721.	5.8	100
149	Architecture and properties of a novel two-dimensional carbon material-graphtetrayne. Nano Energy, 2018, 43, 192-199.	8.2	68
150	Graphdiyne Quantum Dots for Much Improved Stability and Efficiency of Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1701117.	1.9	76
151	Ultrathin Graphdiyne Nanosheets Grown Inâ€Situ on Copper Nanowires and Their Performance as Lithiumâ€lon Battery Anodes. Angewandte Chemie - International Edition, 2018, 57, 774-778.	7.2	257
152	Graphdiyne-WS2 2D-Nanohybrid electrocatalysts for high-performance hydrogen evolution reaction. Carbon, 2018, 129, 228-235.	5.4	124
153	Ultrathin Graphdiyne Nanosheets Grown Inâ€Situ on Copper Nanowires and Their Performance as Lithiumâ€ion Battery Anodes. Angewandte Chemie, 2018, 130, 782-786.	1.6	41
154	N-doped graphdiyne for high-performance electrochemical electrodes. Nano Energy, 2018, 44, 144-154.	8.2	182
155	Graphdiyne-modified cross-linkable fullerene as an efficient electron-transporting layer in organometal halide perovskite solar cells. Nano Energy, 2018, 43, 47-54.	8.2	126
156	Overall water splitting by graphdiyne-exfoliated and -sandwiched layered double-hydroxide nanosheet arrays. Nature Communications, 2018, 9, 5309.	5.8	287
157	Efficiently suppressing lithium dendrites on atomic level by ultrafiltration membrane of graphdiyne. Materials Today Energy, 2018, 10, 191-199.	2.5	28
158	Graphdiyne as a Host Active Material for Perovskite Solar Cell Application. Nano Letters, 2018, 18, 6941-6947.	4.5	110
159	Comparisons between Graphene Oxide and Graphdiyne Oxide in Physicochemistry Biology and Cytotoxicity. ACS Applied Materials & Samp; Interfaces, 2018, 10, 32946-32954.	4.0	58
160	Graphdiyneâ€Based Bulk Heterojunction for Efficient and Moistureâ€Stable Planar Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1802012.	10.2	70
161	Lowâ€Temperature Growth of Allâ€Carbon Graphdiyne on a Silicon Anode for Highâ€Performance Lithiumâ€lon Batteries. Advanced Materials, 2018, 30, e1801459.	11.1	250
162	Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nature Chemistry, 2018, 10, 924-931.	6.6	558

#	Article	IF	Citations
163	Progress in Research into 2D Graphdiyne-Based Materials. Chemical Reviews, 2018, 118, 7744-7803.	23.0	745
164	Fluoride graphdiyne as a free-standing electrode displaying ultra-stable and extraordinary high Li storage performance. Energy and Environmental Science, 2018, 11, 2893-2903.	15.6	146
165	Graphdiyne under pressure: A Raman study. Applied Physics Letters, 2018, 113, .	1.5	10
166	Selectively nitrogen-doped carbon materials as superior metal-free catalysts for oxygen reduction. Nature Communications, 2018, 9, 3376.	5.8	436
167	In-situ constructing 3D graphdiyne as all-carbon binder for high-performance silicon anode. Nano Energy, 2018, 53, 135-143.	8.2	81
168	2D graphdiyne materials: challenges and opportunities in energy field. Science China Chemistry, 2018, 61, 765-786.	4.2	123
169	Chemical Modification and Functionalization of Graphdiyne. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2018, 34, 992-1013.	2.2	35
170	Graphdiyne: from Synthesis to Application. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2018, 34, 959-960.	2.2	5
171	Low temperature, atmospheric pressure for synthesis of a new carbon Ene-yne and application in Li storage. Nano Energy, 2017, 33, 343-349.	8.2	92
172	Fewâ€Layer Graphdiyne Nanosheets Applied for Multiplexed Realâ€Time DNA Detection. Advanced Materials, 2017, 29, 1606755.	11.1	198
173	Graphdiyne for multilevel flexible organic resistive random access memory devices. Materials Chemistry Frontiers, 2017, 1, 1338-1341.	3.2	26
174	Fabrication and Electroproperties of Nanoribbons: Carbon Ene–Yne. Advanced Electronic Materials, 2017, 3, 1700133.	2.6	11
175	Graphdiyneâ€Supported NiCo ₂ S ₄ Nanowires: A Highly Active and Stable 3D Bifunctional Electrode Material. Small, 2017, 13, 1700936.	5.2	194
176	Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries. Nature Communications, 2017, 8, 1172.	5.8	357
177	Controlling the Growth of Molecular Crystal Aggregates with Distinct Linear and Nonlinear Optical Properties. ACS Applied Materials & Interfaces, 2017, 9, 30862-30871.	4.0	13
178	Synthesis and Properties of 2D Carbonâ€"Graphdiyne. Accounts of Chemical Research, 2017, 50, 2470-2478.	7.6	420
179	In situ synthesis of a Prussian blue nanoparticles/graphdiyne oxide nanocomposite with high stability and electrocatalytic activity. Electrochemistry Communications, 2017, 83, 96-101.	2.3	42
180	Intrinsic magnetism of graphdiyne. Applied Physics Letters, 2017, 111, .	1.5	45

#	Article	IF	CITATIONS
181	Synthesis of Chlorineâ€Substituted Graphdiyne and Applications for Lithiumâ€Ion Storage. Angewandte Chemie - International Edition, 2017, 56, 10740-10745.	7.2	206
182	Synthesis of Chlorineâ€Substituted Graphdiyne and Applications for Lithiumâ€Ion Storage. Angewandte Chemie, 2017, 129, 10880-10885.	1.6	52
183	New method for the synthesis of a highly-conjugated acene material and its application in Perovskite solar cells. Materials Chemistry Frontiers, 2017, 1, 2261-2264.	3.2	8
184	Graphdiyne as Electrode Material: Tuning Electronic State and Surface Chemistry for Improved Electrode Reactivity. Analytical Chemistry, 2017, 89, 13008-13015.	3.2	67
185	Tuning Luminescence and Conductivity through Controlled Growth of Polymorphous Molecular Crystals. Advanced Electronic Materials, 2017, 3, 1700132.	2.6	8
186	How functional groups change the electronic structure of graphdiyne: Theory and experiment. Carbon, 2017, 123, 1-6.	5.4	45
187	A facile approach for graphdiyne preparation under atmosphere for an advanced battery anode. Chemical Communications, 2017, 53, 8074-8077.	2.2	142
188	Graphdiyne Materials as Nanotransducer for in Vivo Photoacoustic Imaging and Photothermal Therapy of Tumor. Chemistry of Materials, 2017, 29, 6087-6094.	3.2	149
189	Design and self-assembly of advanced functional molecular materials—from low dimension to multi-dimension. Scientia Sinica Chimica, 2017, 47, 1045-1056.	0.2	35
190	Quantitative Detection of Visible Light on Hybrid Nanostructures of Twoâ€dimension Porous Conjugated Polymers and Chargeâ€Transfer Complexes by Field Emission. Chemistry - an Asian Journal, 2016, 11, 2778-2784.	1.7	6
191	Graphdiyne: An Efficient Hole Transporter for Stable Highâ€Performance Colloidal Quantum Dot Solar Cells. Advanced Functional Materials, 2016, 26, 5284-5289.	7.8	172
192	Graphdiyne applied for lithium-ion capacitors displaying high power and energy densities. Nano Energy, 2016, 22, 615-622.	8.2	190
193	Aggregation Induced Enhancement of Linear and Nonlinear Optical Emission from a Hexaphenylene Derivative. Advanced Functional Materials, 2016, 26, 8968-8977.	7.8	77
194	Controlling the Interface Areas of Organic/Inorganic Semiconductor Heterojunction Nanowires for High-Performance Diodes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 21563-21569.	4.0	26
195	Self-catalyzed growth of Cu@graphdiyne core–shell nanowires array for high efficient hydrogen evolution cathode. Nano Energy, 2016, 30, 858-866.	8.2	149
196	A method for controlling the synthesis of stable twisted two-dimensional conjugated molecules. Nature Communications, 2016, 7, 11637.	5.8	60
197	Extraordinarily Durable Graphdiyne-Supported Electrocatalyst with High Activity for Hydrogen Production at All Values of pH. ACS Applied Materials & Samp; Interfaces, 2016, 8, 31083-31091.	4.0	125
198	Graphdiyne:ZnO Nanocomposites for Highâ∈Performance UV Photodetectors. Advanced Materials, 2016, 28, 3697-3702.	11.1	258

#	Article	IF	Citations
199	Nitrogen-Doped Graphdiyne Applied for Lithium-Ion Storage. ACS Applied Materials & Diterfaces, 2016, 8, 8467-8473.	4.0	184
200	Graphdiyne oxide as a platform for fluorescence sensing. Chemical Communications, 2016, 52, 5629-5632.	2.2	115
201	Heteroatom doped graphdiyne as efficient metal-free electrocatalyst for oxygen reduction reaction in alkaline medium. Journal of Materials Chemistry A, 2016, 4, 4738-4744.	5.2	139
202	High Conductive Two-Dimensional Covalent Organic Framework for Lithium Storage with Large Capacity. ACS Applied Materials & Samp; Interfaces, 2016, 8, 5366-5375.	4.0	255
203	Donor–acceptor molecules based on benzothiadiazole: Synthesis, X-ray crystal structures, linear and third-order nonlinear optical properties. Dyes and Pigments, 2016, 125, 100-105.	2.0	64
204	Progress and prospect of two dimensional carbon graphdiyne. Chinese Science Bulletin, 2016, 61, 2901-2912.	0.4	33
205	Ultraâ€light Hierarchical Graphene Electrode for Binderâ€Free Supercapacitors and Lithiumâ€lon Battery Anodes. Small, 2015, 11, 4922-4930.	5.2	67
206	Controlling Microsized Polymorphic Architectures with Distinct Linear and Nonlinear Optical Properties. Advanced Optical Materials, 2015, 3, 948-956.	3.6	39
207	Electrodes: A New Graphdiyne Nanosheet/Pt Nanoparticle-Based Counter Electrode Material with Enhanced Catalytic Activity for Dye-Sensitized Solar Cells (Adv. Energy Mater. 12/2015). Advanced Energy Materials, 2015, 5, n/a-n/a.	10.2	1
208	Synthesis of Graphdiyne Nanowalls Using Acetylenic Coupling Reaction. Journal of the American Chemical Society, 2015, 137, 7596-7599.	6.6	484
209	Controllable growth of organic nanostructures from 0D to 1D with different optical properties. RSC Advances, 2015, 5, 100457-100463.	1.7	3
210	Efficient CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells Based on Graphdiyne (GD)â€Modified P3HT Holeâ€Transporting Material. Advanced Energy Materials, 2015, 5, 1401943.	10.2	282
211	Graphdiyne Oxides as Excellent Substrate for Electroless Deposition of Pd Clusters with High Catalytic Activity. Journal of the American Chemical Society, 2015, 137, 5260-5263.	6.6	341
212	Highly Efficient Electron Transport Obtained by Doping PCBM with Graphdiyne in Planar-Heterojunction Perovskite Solar Cells. Nano Letters, 2015, 15, 2756-2762.	4.5	338
213	A New Graphdiyne Nanosheet/Pt Nanoparticleâ€Based Counter Electrode Material with Enhanced Catalytic Activity for Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2015, 5, 1500296.	10.2	180
214	Self-catalyzed Growth of Large-Area Nanofilms of Two-Dimensional Carbon. Scientific Reports, 2015, 5, 7756.	1.6	129
215	Selfâ€Assembly of Functional Molecules into 1D Crystalline Nanostructures. Advanced Materials, 2015, 27, 985-1013.	11.1	130
216	Bulk graphdiyne powder applied for highly efficient lithium storage. Chemical Communications, 2015, 51, 1834-1837.	2.2	178

#	Article	IF	Citations
217	Graphdiyne for high capacity and long-life lithium storage. Nano Energy, 2015, 11, 481-489.	8.2	315
218	Pristine graphdiyne-hybridized photocatalysts using graphene oxide as a dual-functional coupling reagent. Physical Chemistry Chemical Physics, 2015, 17, 1217-1225.	1.3	62
219	A chiral macrocyclic receptor for sulfate anions with CD signals. RSC Advances, 2014, 4, 2023-2028.	1.7	5
220	Synthesis of 1,2,3â€Triazoleâ€4â€carboxamideâ€Containing Foldamers for Sulfate Recognition. European Journal of Organic Chemistry, 2014, 2014, 2687-2693.	1.2	14
221	Application of "Click―Chemistry to the Construction of Supramolecular Functional Systems. Asian Journal of Organic Chemistry, 2014, 3, 582-602.	1.3	47
222	Self-Assembly of Intramolecular Charge-Transfer Compounds into Functional Molecular Systems. Accounts of Chemical Research, 2014, 47, 1186-1198.	7.6	417
223	Graphdiyne and graphyne: from theoretical predictions to practical construction. Chemical Society Reviews, 2014, 43, 2572.	18.7	935
224	Synthesis of a naphthalenediimide-based cyclophane for controlling anion–arene interactions. Inorganic Chemistry Frontiers, 2014, 1, 661-667.	3.0	10
225	Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions. Nanoscale, 2014, 6, 11336-11343.	2.8	229
226	A Facile Way for Synthesis of High Performance Electron Receptor MCB: A Promising Replacer of PCBM. Fullerenes Nanotubes and Carbon Nanostructures, 2014, 22, 289-298.	1.0	4
227	A "clicked―porphyrin cage with high binding affinity towards fullerenes. RSC Advances, 2014, 4, 27389-27392.	1.7	17
228	Controllable Supramolecular Architectures for Modulating Optical Properties on the Molecular Aggregation Level. European Journal of Organic Chemistry, 2014, 2014, 5004-5009.	1.2	5
229	Self-assembly low dimensional inorganic/organic heterojunction nanomaterials. Science Bulletin, 2013, 58, 2686-2697.	1.7	12
230	Synthesis of Aminoâ€Substituted Pyrroleâ€Fused Perylenebis(dicarboximide) Derivatives by a Oneâ€Pot Azidation/Reduction/Cyclization. European Journal of Organic Chemistry, 2013, 2013, 7076-7082.	1.2	9
231	Aggregation-induced emission on benzothiadiazole dyads with large third-order optical nonlinearity. Physical Chemistry Chemical Physics, 2013, 15, 12660.	1.3	47
232	Hybrid molecular nanostructures with donor-acceptor chains. Science China Chemistry, 2013, 56, 124-130.	4.2	8
233	Photocatalytic Properties of Graphdiyne and Graphene Modified TiO ₂ : From Theory to Experiment. ACS Nano, 2013, 7, 1504-1512.	7.3	434
234	Architecture of low dimensional nanostructures based on conjugated polymers. Polymer Chemistry, 2013, 4, 5162.	1.9	28

#	Article	IF	Citations
235	Electronic logic gates from three-segment nanowires featuring two pâ \in "n heterojunctions. NPG Asia Materials, 2013, 5, e59-e59.	3.8	16
236	Selfâ€Assembled Organic Microfibers for Nonlinear Optics. Advanced Materials, 2013, 25, 2084-2089.	11.1	119
237	Growing uniform copolymer nanowire arrays for high stability and efficient field emission. Journal of Materials Chemistry, 2012, 22, 11068.	6.7	19
238	Controlling growth of molecular crystal aggregates for efficient optical waveguides. Chemical Communications, 2012, 48, 9011.	2.2	39
239	Tuning Growth of Low-Dimensional Organic Nanostructures for Efficient Optical Waveguide Applications. Journal of Physical Chemistry C, 2012, 116, 14134-14138.	1.5	32
240	Construction of graphdiyne nanowires with high-conductivity and mobility. Dalton Transactions, 2012, 41, 730-733.	1.6	207
241	A Novel and Highly Efficient Photocatalyst Based on P25–Graphdiyne Nanocomposite. Small, 2012, 8, 265-271.	5.2	289
242	Synthesis of a Naphthaleneâ€diimide Cyclophane for Tuning Supramolecular Interactions by Metal Ions. European Journal of Organic Chemistry, 2012, 2012, 4287-4292.	1.2	17
243	Construction of Tubular Molecule Aggregations of Graphdiyne for Highly Efficient Field Emission. Journal of Physical Chemistry C, 2011, 115, 2611-2615.	1.5	298
244	Construction of heterostructure materials toward functionality. Chemical Society Reviews, 2011, 40, 4506.	18.7	191
245	Electronic Structure and Carrier Mobility in Graphdiyne Sheet and Nanoribbons: Theoretical Predictions. ACS Nano, 2011, 5, 2593-2600.	7. 3	833
246	Field emission from GeSe2 nanowalls. Applied Physics Letters, 2011, 98, 113118.	1.5	18
247	Quasiparticle energies and excitonic effects of the two-dimensional carbon allotrope graphdiyne: Theory and experiment. Physical Review B, 2011, 84, .	1.1	305
248	The effect of graphdiyne doping on the performance of polymer solar cells. Synthetic Metals, 2011, 161, 2055-2057.	2.1	77
249	The gas–liquid tunable self-assembly properties of rod–coil diblock copolymer: donor–acceptor alternating structure served as rod segment. Colloid and Polymer Science, 2011, 289, 1469-1478.	1.0	5
250	Strong Chargeâ€Transfer Chromophores from [2+2] Cycloadditions of TCNE and TCNQ to Peripheral Donorâ€Substituted Alkynes. European Journal of Organic Chemistry, 2011, 2011, 6445-6451.	1.2	34
251	Synthesis of Zwitterionic Waterâ€Soluble Oligofluorenes with Good Lightâ€Harvesting Ability. Advanced Functional Materials, 2010, 20, 2175-2180.	7.8	17
252	Ordered Nanosphere Alignment of Porphyrin for the Improvement of Nonlinear Optical Properties. Advanced Materials, 2010, 22, 3532-3536.	11.1	110

#	Article	IF	Citations
253	Photoelectric conversion behavior based on direct interfacial charge-transfer from porphyrin derivative to silicon nanowires. Applied Physics Letters, 2010, 97, 253111.	1.5	11
254	Aggregate Nanostructures of Organic Molecular Materials. Accounts of Chemical Research, 2010, 43, 1496-1508.	7.6	362
255	Architecture of graphdiyne nanoscale films. Chemical Communications, 2010, 46, 3256.	2.2	2,210
256	Assembled Organic/Inorganic pâ^n Junction Interface and Photovoltaic Cell on a Single Nanowire. Journal of Physical Chemistry Letters, 2010, 1, 327-330.	2.1	134
257	Chemical sensors based on π-conjugated organic molecules and gold nanoparticles. Science in China Series B: Chemistry, 2009, 52, 715-730.	0.8	15
258	Asymmetric and Symmetric Dipoleâ^Dipole Interactions Drive Distinct Aggregation and Emission Behavior of Intramolecular Charge-Transfer Molecules. Journal of Physical Chemistry C, 2009, 113, 5924-5932.	1.5	68
259	Aggregation-Enhanced Emission in Gold Nanoparticles Protected by Tetradentate Perylene Derivative. Langmuir, 2009, 25, 11351-11357.	1.6	16
260	Synthesis of a novel poly(<i>para</i> â€phenylene ethynylene) for highly selective and sensitive sensing mercury (II) ions. Journal of Polymer Science Part A, 2008, 46, 1998-2007.	2.5	38
261	Efficient tuning nonlinear optical properties: Synthesis and characterization of a series of novel poly(aryleneethynylene)s coâ€containing BODIPY. Journal of Polymer Science Part A, 2008, 46, 7401-7410.	2.5	71
262	The Process of Functional Conjugated Organic Polymers Derived from Tripleâ€Bond Building Blocks. Macromolecular Chemistry and Physics, 2008, 209, 1541-1552.	1.1	26
263	Fabrication of Lowâ€Dimension Nanostructures Based on Organic Conjugated Molecules. Advanced Materials, 2008, 20, 2918-2925.	11.1	102
264	Fluorescent Conjugated Polyelectrolytes for Biomacromolecule Detection. Advanced Materials, 2008, 20, 2959-2964.	11.1	201
265	Light-Controlled Organic/Inorganic Pâ^N Junction Nanowires. Journal of the American Chemical Society, 2008, 130, 9198-9199.	6.6	162
266	Morphology Transition and Aggregation-Induced Emission of an Intramolecular Charge-Transfer Compound. Langmuir, 2008, 24, 4231-4237.	1.6	137
267	Tuning CuTCNQ Nanostructures on Patterned Copper Films. Journal of Physical Chemistry C, 2008, 112, 17625-17630.	1.5	28
268	Self-assembly and properties of low-dimensional nanomaterials based on π-conjugated organic molecules. Pure and Applied Chemistry, 2008, 80, 639-658.	0.9	15
269	Novel Selective Receptor for SO2 Based on Molecular Recognition. Supramolecular Chemistry, 2007, 19, 525-529.	1.5	3
270	Fluorescence ratiometric assays of hydrogen peroxide and glucose in serum using conjugated polyelectrolytes. Journal of Materials Chemistry, 2007, 17, 3702.	6.7	72

#	Article	IF	Citations
271	Fluorescence Turn-On Detection of Nitric Oxide in Aqueous Solution Using Cationic Conjugated Polyelectrolytes. Macromolecular Rapid Communications, 2007, 28, 241-245.	2.0	50
272	Non-Ionic Water-Soluble Crown-Ether-Substituted Polyfluorene as Fluorescent Probe for Lead Ion Assays. Macromolecular Rapid Communications, 2007, 28, 1333-1338.	2.0	31
273	Molecular modeling of poly(p-phenylenevinylene): Synthesis and photophysical properties of oligomers. Journal of Polymer Science Part A, 2007, 45, 911-924.	2.5	15
274	Induced helix formation and stabilization of a meta-linked polymer containing pyridine units. Journal of Polymer Science Part A, 2007, 45, 1403-1412.	2.5	7
275	Synthesis of Water-Soluble Dendritic Conjugated Polymers for Fluorescent DNA Assays. Macromolecular Rapid Communications, 2006, 27, 1739-1745.	2.0	21
276	A New Class of Conjugated Polymers Having Porphyrin, Poly(p-phenylenevinylene), and Fullerene Units for Efficient Electron Transfer. Macromolecules, 2006, 39, 5319-5325.	2.2	49
277	Thinner-film plastic photovoltaic cells based on different C60 derivatives. Polymers for Advanced Technologies, 2006, 17, 500-505.	1.6	11
278	Construction of diads and triads copolymer systems containing perylene, porphyrin, and/or fullerene blocks. Journal of Polymer Science Part A, 2006, 44, 5863-5874.	2.5	22
279	A Reversible and Highly Selective Fluorescent Sensor for Mercury(II) Using Poly(thiophene)s that Contain Thymine Moieties. Macromolecular Rapid Communications, 2006, 27, 389-392.	2.0	192
280	A Fluorescence Ratiometric Protein Assay Using Light-Harvesting Conjugated Polymers. Macromolecular Rapid Communications, 2006, 27, 993-997.	2.0	22
281	A New Copolymer Containing Perylene Bisimide and Porphyrin Moieties: Synthesis and Characterization. Macromolecular Chemistry and Physics, 2005, 206, 2199-2205.	1.1	12
282	Synthesis and Characterization of New Types of Perylene Bisimide-Containing Conjugated Copolymers. Macromolecular Rapid Communications, 2005, 26, 721-727.	2.0	13
283	Self-assembly of N-3-Î ³ -pyridyl Aza[60]fulleroid on Au(111). Science Bulletin, 2005, 50, 407-412.	1.7	0
284	Fabrication of novel conjugated polymer nanostructure: Porphyrins and fullerenes conjugately linked to the polyacetylene backbone as pendant groups. Journal of Polymer Science Part A, 2005, 43, 2851-2861.	2.5	18
285	Synthesis and Characterization of 3,5-Bis(2-hydroxyphenyl)-1,2,4-triazole Functionalized Tetraaryloxy Perylene Bisimide and Metal-Directed Self-Assembly. Journal of Organic Chemistry, 2005, 70, 9686-9692.	1.7	38
286	Fabrication of Polydiacetylene Nanowires by Associated Self-Polymerization and Self-Assembly Processes for Efficient Field Emission Properties. Journal of the American Chemical Society, 2005, 127, 12452-12453.	6.6	119
287	Field Emission Properties of Large-Area Nanowires of Organic Charge-Transfer Complexes. Journal of the American Chemical Society, 2005, 127, 1120-1121.	6.6	228
288	Influence of Small Molecules in Conducting Polyaniline on the Photovoltaic Properties of Solid-State Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2004, 108, 18693-18697.	1.2	103

#	Article	IF	CITATIONS
289	Photocurrent Generation in Multilayer Self-Assembly Films Fabricated from Water-Soluble Poly(phenylene vinylene). Chemistry - A European Journal, 2003, 9, 6031-6038.	1.7	53
290	Synthesis of Organic One-Dimensional Nanomaterials by Solid-Phase Reaction. Journal of the American Chemical Society, 2003, 125, 10794-10795.	6.6	163
291	Composites of C60 based poly(phenylene vinylene) dyad and conjugated polymer for polymer light-emitting devices. Applied Physics Letters, 2002, 80, 3847-3849.	1.5	17
292	SYNTHESIS OF NEW C60-BASED DYADS CONTAINING CARBAZOLE AND BENZOTHIAZOLE MOIETIES. Synthetic Communications, 2002, 32, 2507-2512.	1.1	5
293	Photo-induced DNA cleavage in self-assembly multilayer films. New Journal of Chemistry, 2002, 26, 617-620.	1.4	16
294	Imaging As-Grown [60]Fullerene Nanotubes by Template Technique. Journal of the American Chemical Society, 2002, 124, 13370-13371.	6.6	210
295	Synthesis of New Dyads Containing Different Percentages of C60 Covalently Linked PPV. AIP Conference Proceedings, 2002, , .	0.3	O
296	Title is missing!. Macromolecular Chemistry and Physics, 2002, 203, 1931-1935.	1.1	6
297	Electrochemistry of the films of a novel class C60 covalently linked PPV derivative: Electrochemical quartz crystal microbalance study in acetonitrile solutions of tetra-n-butylammonium cations. Journal of Applied Polymer Science, 2002, 86, 2737-2741.	1.3	4
298	C60 based nanoparticles: self-assembly of a novel fullerene derivative. New Journal of Chemistry, 2001, 25, 670-672.	1.4	19
299	The self-assembly of [60]fullerene-substituted 2,2′-bipyridine on the surface of Au(111) and Au nanoparticles. New Journal of Chemistry, 2001, 25, 1191-1194.	1.4	18
300	Synthesis and Fluorescence Properties of a Novel Supramolecular Complex Containing [60]Fullerene Moiety. Supramolecular Chemistry, 2001, 12, 451-455.	1.5	1
301	Synthesis and antioxidative properties of polyphenol-fullerenes. Science Bulletin, 2001, 46, 1790-1792.	1.7	7
302	Influence of organic acids on UV-Vis spectra of pyrrolidino-[60]fullerene derivatives. Science Bulletin, 2001, 46, 1156-1159.	1.7	7
303	Photophysical characteristics of soluble oligo(p-phenylenevinylene)-fullerene dyad. Journal of Polymer Science Part A, 2001, 39, 3981-3988.	2.5	7
304	Direct Evidence of Photoinduced Charge Transfer from Alternating Copolymer to Buckminsterfullerene. Macromolecular Chemistry and Physics, 2001, 202, 1824-1828.	1.1	8
305	Synthesis and magnetic property of a nitroxide based on C60. Science Bulletin, 2000, 45, 896-899.	1.7	5
306	Electronic structure and property studies of the first crowned [60] fulleropyrrolidine. Science in China Series B: Chemistry, 1999, 42, 27-33.	0.8	4

#	Article	IF	CITATIONS
307	Photoconductivity of 1,2-(1?,1?,2?,2?-tetracyanomethanoxymethano)[60]fullerene-doped PVK. Journal of Applied Polymer Science, 1999, 72, 209-213.	1.3	5
308	Synthesis and characterization of a high-efficiency light-emitting alternating copolymer. Journal of Polymer Science Part A, 1999, 37, 2587-2594.	2.5	16
309	The interaction between conjugated polymer and fullerenes. Journal of Applied Polymer Science, 1998, 70, 599-603.	1.3	38
310	Photoconductivity of [60] fullerene derivatives. Science Bulletin, 1998, 43, 2071-2074.	1.7	1
311	The First Crown Ether-Bearing [60]Fullero-Pyrrolidine: Synthesis and Regulation of Absorption Spectrum by ions Binding. Synthetic Communications, 1998, 28, 1957-1962.	1.1	19
312	Effect of Substituents on the Redox Potentials of C ₆₀ Derivatives. Fullerenes, Nanotubes, and Carbon Nanostructures, 1998, 6, 963-980.	0.6	4
313	Effect of Solvents and Supporting Electrolytes on the Electrochemical Properties of C70and its Comparison with C60. Fullerenes, Nanotubes, and Carbon Nanostructures, 1997, 5, 1563-1577.	0.6	3
314	Synthesis of fulleropyrrolidine derivatives of C60. Science Bulletin, 1997, 42, 1180-1184.	1.7	9
315	Preparation of Two Novel C60 and C70 Fullerene Pyrrolidine Derivatives. Fullerenes, Nanotubes, and Carbon Nanostructures, 1996, 4, 1067-1072.	0.6	10
316	C60 photoluminescence spectra related to gas adsorption. Applied Physics Letters, 1992, 61, 1028-1030.	1.5	20
317	Electroactive C60-Polymer Systems. , 0, , 147-170.		0
318	Graphdiyne Nanospheres as a Wettability and Electron Modifier for Enhanced Hydrogenation Catalysis. Angewandte Chemie, 0, , .	1.6	8