Omid C Farokhzad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1335094/publications.pdf

Version: 2024-02-01

196 papers 65,277 citations

111 h-index 202 g-index

208 all docs

208 docs citations

208 times ranked 56948 citing authors

#	Article	IF	CITATIONS
1	Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2007, 2, 751-760.	15.6	7,469
2	Cancer nanomedicine: progress, challenges and opportunities. Nature Reviews Cancer, 2017, 17, 20-37.	12.8	4,153
3	Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles. Molecular Pharmaceutics, 2008, 5, 505-515.	2.3	2,993
4	Impact of Nanotechnology on Drug Delivery. ACS Nano, 2009, 3, 16-20.	7.3	2,760
5	Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Advanced Drug Delivery Reviews, 2014, 66, 2-25.	6.6	2,275
6	Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chemical Reviews, 2016, 116, 2602-2663.	23.0	2,018
7	Cellular uptake of nanoparticles: journey inside the cell. Chemical Society Reviews, 2017, 46, 4218-4244.	18.7	1,709
8	Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6315-6320.	3.3	1,595
9	Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chemical Society Reviews, 2012, 41, 2971.	18.7	1,469
10	Nanotechnology in Drug Delivery and Tissue Engineering: From Discovery to Applications. Nano Letters, 2010, 10, 3223-3230.	4.5	1,369
11	Nanoparticle Delivery of Cancer Drugs. Annual Review of Medicine, 2012, 63, 185-198.	5.0	1,347
12	Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials, 2007, 28, 869-876.	5.7	1,151
13	Preclinical Development and Clinical Translation of a PSMA-Targeted Docetaxel Nanoparticle with a Differentiated Pharmacological Profile. Science Translational Medicine, 2012, 4, 128ra39.	5.8	978
14	Quantum Dotâ^'Aptamer Conjugates for Synchronous Cancer Imaging, Therapy, and Sensing of Drug Delivery Based on Bi-Fluorescence Resonance Energy Transfer. Nano Letters, 2007, 7, 3065-3070.	4.5	950
15	Nanoparticle-Aptamer Bioconjugates. Cancer Research, 2004, 64, 7668-7672.	0.4	873
16	Self-Assembled Lipidâ^'Polymer Hybrid Nanoparticles: A Robust Drug Delivery Platform. ACS Nano, 2008, 2, 1696-1702.	7.3	851
17	pH-Responsive Nanoparticles for Drug Delivery. Molecular Pharmaceutics, 2010, 7, 1913-1920.	2.3	806
18	Microfluidic Platform for Controlled Synthesis of Polymeric Nanoparticles. Nano Letters, 2008, 8, 2906-2912.	4.5	728

#	Article	IF	CITATIONS
19	Nanomedicine: Developing smarter therapeutic and diagnostic modalitiesa~†. Advanced Drug Delivery Reviews, 2006, 58, 1456-1459.	6.6	726
20	Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2586-2591.	3.3	649
21	Insight into nanoparticle cellular uptake and intracellular targeting. Journal of Controlled Release, 2014, 190, 485-499.	4.8	624
22	PLGA–lecithin–PEG core–shell nanoparticles for controlled drug delivery. Biomaterials, 2009, 30, 1627-1634.	5.7	620
23	Cancer nanomedicine: from targeted delivery to combination therapy. Trends in Molecular Medicine, 2015, 21, 223-232.	3.5	578
24	Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nature Nanotechnology, 2012, 7, 623-629.	15.6	571
25	An Aptamer–Doxorubicin Physical Conjugate as a Novel Targeted Drug-Delivery Platform. Angewandte Chemie - International Edition, 2006, 45, 8149-8152.	7.2	552
26	Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17939-17944.	3.3	545
27	Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nature Communications, 2017, 8, 777.	5.8	507
28	Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chemical Society Reviews, 2019, 48, 2891-2912.	18.7	482
29	Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1850-1855.	3.3	467
30	Antimonene Quantum Dots: Synthesis and Application as Nearâ€Infrared Photothermal Agents for Effective Cancer Therapy. Angewandte Chemie - International Edition, 2017, 56, 11896-11900.	7.2	465
31	Surface Charge-Switching Polymeric Nanoparticles for Bacterial Cell Wall-Targeted Delivery of Antibiotics. ACS Nano, 2012, 6, 4279-4287.	7.3	447
32	Targeted nanoparticles for cancer therapy. Nano Today, 2007, 2, 14-21.	6.2	431
33	Self-Assembled Targeted Nanoparticles: Evolution of Technologies and Bench to Bedside Translation. Accounts of Chemical Research, 2011, 44, 1123-1134.	7.6	416
34	ROSâ€Responsive Polyprodrug Nanoparticles for Triggered Drug Delivery and Effective Cancer Therapy. Advanced Materials, 2017, 29, 1700141.	11.1	370
35	Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine. Advanced Drug Delivery Reviews, 2012, 64, 1363-1384.	6.6	365
36	Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E156-65.	3.3	364

#	Article	IF	Citations
37	Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug. Nature Communications, 2015, 6, 8692.	5.8	353
38	Transepithelial Transport of Fc-Targeted Nanoparticles by the Neonatal Fc Receptor for Oral Delivery. Science Translational Medicine, 2013, 5, 213ra167.	5.8	326
39	Twoâ€Dimensional Antimoneneâ€Based Photonic Nanomedicine for Cancer Theranostics. Advanced Materials, 2018, 30, e1802061.	11.1	314
40	Biological Identity of Nanoparticles In Vivo : Clinical Implications of the Protein Corona. Trends in Biotechnology, 2017, 35, 257-264.	4.9	313
41	A mucosal vaccine against <i>Chlamydia trachomatis</i> generates two waves of protective memory T cells. Science, 2015, 348, aaa8205.	6.0	312
42	Enhancing tumor cell response to chemotherapy through nanoparticle-mediated codelivery of siRNA and cisplatin prodrug. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18638-18643.	3.3	302
43	DNA Selfâ€Assembly of Targeted Nearâ€Infraredâ€Responsive Gold Nanoparticles for Cancer Thermoâ€Chemotherapy. Angewandte Chemie - International Edition, 2012, 51, 11853-11857.	7.2	299
44	Superparamagnetic Iron Oxide Nanoparticle–Aptamer Bioconjugates for Combined Prostate Cancer Imaging and Therapy. ChemMedChem, 2008, 3, 1311-1315.	1.6	297
45	Nanotechnology for protein delivery: Overview and perspectives. Journal of Controlled Release, 2016, 240, 24-37.	4.8	294
46	Single-Step Assembly of Homogenous Lipidâ^'Polymeric and Lipidâ^'Quantum Dot Nanoparticles Enabled by Microfluidic Rapid Mixing. ACS Nano, 2010, 4, 1671-1679.	7.3	283
47	\hat{l}_{\pm} _V \hat{l}^{2} ₃ Integrin-Targeted PLGA-PEG Nanoparticles for Enhanced Anti-tumor Efficacy of a Pt(IV) Prodrug. ACS Nano, 2012, 6, 4530-4539.	7.3	281
48	New frontiers in nanotechnology for cancer treatment. Urologic Oncology: Seminars and Original Investigations, 2008, 26, 74-85.	0.8	274
49	Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Science Translational Medicine, 2015, 7, 314ra183.	5.8	273
50	Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice. Science Translational Medicine, 2015, 7, 275ra20.	5.8	269
51	Bioinspired multivalent DNA network for capture and release of cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19626-19631.	3.3	266
52	Nanoparticle Technologies for Cancer Therapy. Handbook of Experimental Pharmacology, 2010, , 55-86.	0.9	262
53	Annexin A1–containing extracellular vesicles and polymeric nanoparticles promote epithelial wound repair. Journal of Clinical Investigation, 2015, 125, 1215-1227.	3.9	257
54	Nanotechnology and aptamers: applications in drug delivery. Trends in Biotechnology, 2008, 26, 442-449.	4.9	247

#	Article	IF	CITATIONS
55	Nanoparticle–aptamer bioconjugates for cancer targeting. Expert Opinion on Drug Delivery, 2006, 3, 311-324.	2.4	245
56	Co-Delivery of Hydrophobic and Hydrophilic Drugs from Nanoparticle–Aptamer Bioconjugates. ChemMedChem, 2007, 2, 1268-1271.	1.6	245
57	Immunocompatibility properties of lipid–polymer hybrid nanoparticles with heterogeneous surface functional groups. Biomaterials, 2009, 30, 2231-2240.	5.7	240
58	Engineered nanomedicine for myeloma and bone microenvironment targeting. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10287-10292.	3.3	234
59	Evolution of macromolecular complexity in drug delivery systems. Nature Reviews Chemistry, 2017, 1, .	13.8	233
60	Marriage of black phosphorus and Cu2+ as effective photothermal agents for PET-guided combination cancer therapy. Nature Communications, 2020, 11, 2778.	5.8	233
61	Spatiotemporal controlled delivery of nanoparticles to injured vasculature. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2213-2218.	3.3	231
62	A materials-science perspective on tackling COVID-19. Nature Reviews Materials, 2020, 5, 847-860.	23.3	228
63	Personalized protein corona on nanoparticles and its clinical implications. Biomaterials Science, 2017, 5, 378-387.	2.6	227
64	Polymeric Nanoparticles for Drug Delivery. Methods in Molecular Biology, 2010, 624, 163-175.	0.4	226
65	Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opinion on Biological Therapy, 2008, 8, 1063-1070.	1.4	225
66	Cell docking inside microwells within reversibly sealed microfluidic channels for fabricating multiphenotype cell arrays. Lab on A Chip, 2005, 5, 1380.	3.1	224
67	Micropatterned cell co-cultures using layer-by-layer deposition of extracellular matrix components. Biomaterials, 2006, 27, 1479-1486.	5.7	220
68	Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomedicine, 2007, 2, 669-680.	1.7	219
69	Ultra-High Throughput Synthesis of Nanoparticles with Homogeneous Size Distribution Using a Coaxial Turbulent Jet Mixer. ACS Nano, 2014, 8, 6056-6065.	7.3	217
70	Ultraâ€pHâ€Responsive and Tumorâ€Penetrating Nanoplatform for Targeted siRNA Delivery with Robust Antiâ€Cancer Efficacy. Angewandte Chemie - International Edition, 2016, 55, 7091-7094.	7.2	216
71	Restoration of tumour-growth suppression in vivo via systemic nanoparticle-mediated delivery of PTEN mRNA. Nature Biomedical Engineering, 2018, 2, 850-864.	11.6	214
72	Polymeric nanoparticle drug delivery technologies for oral delivery applications. Expert Opinion on Drug Delivery, 2015, 12, 1459-1473.	2.4	206

#	Article	IF	Citations
73	Emerging understanding of the protein corona at the nano-bio interfaces. Nano Today, 2016, 11, 817-832.	6.2	205
74	Glutathione-Responsive Prodrug Nanoparticles for Effective Drug Delivery and Cancer Therapy. ACS Nano, 2019, 13, 357-370.	7.3	204
75	Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine, 2010, 5, 269-285.	1.7	201
76	Synthesis of Sizeâ€Tunable Polymeric Nanoparticles Enabled by 3D Hydrodynamic Flow Focusing in Singleâ€Layer Microchannels. Advanced Materials, 2011, 23, H79-83.	11.1	200
77	Microfluidic Platform for Combinatorial Synthesis and Optimization of Targeted Nanoparticles for Cancer Therapy. ACS Nano, 2013, 7, 10671-10680.	7.3	196
78	Germanene-Based Theranostic Materials for Surgical Adjuvant Treatment: Inhibiting Tumor Recurrence and Wound Infection. Matter, 2020, 3, 127-144.	5.0	190
79	Mass Production and Size Control of Lipid–Polymer Hybrid Nanoparticles through Controlled Microvortices. Nano Letters, 2012, 12, 3587-3591.	4.5	189
80	Intracellular Mechanistic Understanding of 2D MoS ₂ Nanosheets for Anti-Exocytosis-Enhanced Synergistic Cancer Therapy. ACS Nano, 2018, 12, 2922-2938.	7.3	188
81	Nanomedicines for renal disease: current status and future applications. Nature Reviews Nephrology, 2016, 12, 738-753.	4.1	179
82	Synthetic mRNA nanoparticle-mediated restoration of p53 tumor suppressor sensitizes $\langle i \rangle$ p53 $\langle i \rangle$ -deficient cancers to mTOR inhibition. Science Translational Medicine, 2019, 11, .	5.8	177
83	Glutathione-Scavenging Poly(disulfide amide) Nanoparticles for the Effective Delivery of Pt(IV) Prodrugs and Reversal of Cisplatin Resistance. Nano Letters, 2018, 18, 4618-4625.	4.5	173
84	Multifunctional Envelope-Type siRNA Delivery Nanoparticle Platform for Prostate Cancer Therapy. ACS Nano, 2017, 11, 2618-2627.	7.3	172
85	Long-circulating siRNA nanoparticles for validating Prohibitin1-targeted non-small cell lung cancer treatment. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7779-7784.	3.3	170
86	Targeted Interleukin-10 Nanotherapeutics Developed with a Microfluidic Chip Enhance Resolution of Inflammation in Advanced Atherosclerosis. ACS Nano, 2016, 10, 5280-5292.	7.3	170
87	Effects of ligands with different water solubilities on self-assembly and properties of targeted nanoparticles. Biomaterials, 2011, 32, 6226-6233.	5.7	169
88	Phosphorus Science-Oriented Design and Synthesis of Multifunctional Nanomaterials for Biomedical Applications. Matter, 2020, 2, 297-322.	5.0	165
89	Hydrophobic Cysteine Poly(disulfide)â€based Redoxâ€Hypersensitive Nanoparticle Platform for Cancer Theranostics. Angewandte Chemie - International Edition, 2015, 54, 9218-9223.	7.2	164
90	Microfluidic System for Studying the Interaction of Nanoparticles and Microparticles with Cells. Analytical Chemistry, 2005, 77, 5453-5459.	3.2	159

#	Article	IF	CITATIONS
91	ROS-Mediated Selective Killing Effect of Black Phosphorus: Mechanistic Understanding and Its Guidance for Safe Biomedical Applications. Nano Letters, 2020, 20, 3943-3955.	4.5	158
92	Differentially Charged Hollow Core/Shell Lipid–Polymer–Lipid Hybrid Nanoparticles for Small Interfering RNA Delivery. Angewandte Chemie - International Edition, 2011, 50, 7027-7031.	7.2	156
93	Aptamer-Functionalized Nanoparticles for Medical Applications: Challenges and Opportunities. ACS Nano, 2012, 6, 3670-3676.	7.3	149
94	Engineering of Targeted Nanoparticles for Cancer Therapy Using Internalizing Aptamers Isolated by Cell-Uptake Selection. ACS Nano, 2012, 6, 696-704.	7.3	148
95	Challenges in DNA Delivery and Recent Advances in Multifunctional Polymeric DNA Delivery Systems. Biomacromolecules, 2017, 18, 2231-2246.	2.6	147
96	Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release. Vaccine, 2014, 32, 2882-2895.	1.7	144
97	HERâ€2â€Targeted Nanoparticle–Affibody Bioconjugates for Cancer Therapy. ChemMedChem, 2008, 3, 1839-1843.	1.6	143
98	Nanotechnology-Based Strategies for siRNA Brain Delivery for Disease Therapy. Trends in Biotechnology, 2018, 36, 562-575.	4.9	139
99	Parallel microfluidic synthesis of size-tunable polymeric nanoparticles using 3D flow focusing towards in vivo study. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 401-409.	1.7	134
100	siRNA nanoparticles targeting CaMKII \hat{I}^3 in lesional macrophages improve atherosclerotic plaque stability in mice. Science Translational Medicine, 2020, 12, .	5.8	132
101	Adjuvant-pulsed mRNA vaccine nanoparticle for immunoprophylactic and therapeutic tumor suppression in mice. Biomaterials, 2021, 266, 120431.	5.7	131
102	Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5552-5557.	3.3	127
103	Advances in Drug Delivery. Annual Review of Materials Research, 2011, 41, 1-20.	4.3	125
104	Magnetically Responsive Polymeric Microparticles for Oral Delivery of Protein Drugs. Pharmaceutical Research, 2006, 23, 557-564.	1.7	122
105	Development of Multinuclear Polymeric Nanoparticles as Robust Protein Nanocarriers. Angewandte Chemie - International Edition, 2014, 53, 8975-8979.	7.2	122
106	Polymeric Nanoparticle Technologies for Oral Drug Delivery. Clinical Gastroenterology and Hepatology, 2014, 12, 1605-1610.	2.4	122
107	In vivo prevention of arterial restenosis with paclitaxel-encapsulated targeted lipid–polymeric nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19347-19352.	3.3	121
108	Polymeric Nanoparticles Amenable to Simultaneous Installation of Exterior Targeting and Interior Therapeutic Proteins. Angewandte Chemie - International Edition, 2016, 55, 3309-3312.	7.2	121

#	Article	IF	CITATIONS
109	Tumor Microenvironment-Responsive Multistaged Nanoplatform for Systemic RNAi and Cancer Therapy. Nano Letters, 2017, 17, 4427-4435.	4.5	119
110	Nanofabrication and Microfabrication of Functional Materials for Tissue Engineering. Tissue Engineering, 2007, 13, 1867-1877.	4.9	117
111	Targeted nanoparticles for colorectal cancer. Nanomedicine, 2016, 11, 2443-2456.	1.7	117
112	Staneneâ€Based Nanosheets for βâ€Elemene Delivery and Ultrasoundâ€Mediated Combination Cancer Therapy. Angewandte Chemie - International Edition, 2021, 60, 7155-7164.	7.2	113
113	Reactivation of the tumor suppressor PTEN by mRNA nanoparticles enhances antitumor immunity in preclinical models. Science Translational Medicine, 2021, 13, .	5.8	111
114	Synthesis of Polymer–Lipid Nanoparticles for Image-Guided Delivery of Dual Modality Therapy. Bioconjugate Chemistry, 2013, 24, 1429-1434.	1.8	104
115	Single Step Reconstitution of Multifunctional High-Density Lipoprotein-Derived Nanomaterials Using Microfluidics. ACS Nano, 2013, 7, 9975-9983.	7.3	104
116	Multiscale technologies for treatment of ischemic cardiomyopathy. Nature Nanotechnology, 2017, 12, 845-855.	15.6	104
117	2D Monoelemental Germanene Quantum Dots: Synthesis as Robust Photothermal Agents for Photonic Cancer Nanomedicine. Angewandte Chemie - International Edition, 2019, 58, 13405-13410.	7.2	102
118	Charge Conversional Biomimetic Nanocomplexes as a Multifunctional Platform for Boosting Orthotopic Glioblastoma RNAi Therapy. Nano Letters, 2020, 20, 1637-1646.	4.5	102
119	Stimuli-Responsive Polymer–Prodrug Hybrid Nanoplatform for Multistage siRNA Delivery and Combination Cancer Therapy. Nano Letters, 2019, 19, 5967-5974.	4.5	101
120	ChemoRad nanoparticles: a novel multifunctional nanoparticle platform for targeted delivery of concurrent chemoradiation. Nanomedicine, 2010, 5, 361-368.	1.7	95
121	Nano–Bio Interactions in Cancer: From Therapeutics Delivery to Early Detection. Accounts of Chemical Research, 2021, 54, 291-301.	7.6	95
122	Antimonene Quantum Dots: Synthesis and Application as Nearâ€Infrared Photothermal Agents for Effective Cancer Therapy. Angewandte Chemie, 2017, 129, 12058-12062.	1.6	93
123	Current Progress of Aptamer-Based Molecular Imaging. Journal of Nuclear Medicine, 2014, 55, 353-356.	2.8	91
124	Biomaterials and nanomedicine for bone regeneration: Progress and future prospects. Exploration, 2021, 1, 20210011.	5.4	90
125	Nanoparticle Encapsulation of Mitaplatin and the Effect Thereof on <i>In Vivo</i> Nano, 2013, 7, 5675-5683.	7.3	89
126	Redox-responsive polyprodrug nanoparticles for targeted siRNA delivery and synergistic liver cancer therapy. Biomaterials, 2020, 234, 119760.	5.7	89

#	Article	IF	CITATIONS
127	Oral Insulin Delivery Platforms: Strategies To Address the Biological Barriers. Angewandte Chemie - International Edition, 2020, 59, 19787-19795.	7.2	88
128	PKC-ε regulates basolateral endocytosis in human T84 intestinal epithelia: role of F-actin and MARCKS. American Journal of Physiology - Cell Physiology, 1999, 277, C1239-C1249.	2.1	86
129	Redoxâ€Responsive Nanoparticleâ€Mediated Systemic RNAi for Effective Cancer Therapy. Small, 2018, 14, e1802565.	5. 2	85
130	Surface De-PEGylation Controls Nanoparticle-Mediated siRNA Delivery $\langle i \rangle$ In Vitro $\langle i \rangle$ and $\langle i \rangle$ In Vivo $\langle i \rangle$. Theranostics, 2017, 7, 1990-2002.	4.6	81
131	Nanobuffering of pH-Responsive Polymers: A Known but Sometimes Overlooked Phenomenon and Its Biological Applications. ACS Nano, 2019, 13, 4876-4882.	7.3	77
132	Engineering of lipid-coated PLGA nanoparticles with a tunable payload of diagnostically active nanocrystals for medical imaging. Chemical Communications, 2012, 48, 5835.	2.2	76
133	Hybrid lipid–polymer nanoparticles for sustained siRNA delivery and gene silencing. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, e897-e900.	1.7	76
134	On firm ground: IP protection of therapeutic nanoparticles. Nature Biotechnology, 2010, 28, 1267-1270.	9.4	75
135	Theranostic near-infrared fluorescent nanoplatform for imaging and systemic siRNA delivery to metastatic anaplastic thyroid cancer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7750-7755.	3.3	73
136	Nanotechnology for drug delivery: the perfect partnership. Expert Opinion on Drug Delivery, 2008, 5, 927-929.	2.4	71
137	Nanoparticles Containing a Liver X Receptor Agonist Inhibit Inflammation and Atherosclerosis. Advanced Healthcare Materials, 2015, 4, 228-236.	3.9	66
138	Poly(ethylene glycol) with Observable Shedding. Angewandte Chemie - International Edition, 2010, 49, 6567-6571.	7.2	65
139	Synergistic cytotoxicity of irinotecan and cisplatin in dual-drug targeted polymeric nanoparticles. Nanomedicine, 2013, 8, 687-698.	1.7	65
140	The use of charge-coupled polymeric microparticles and micromagnets for modulating the bioavailability of orally delivered macromolecules. Biomaterials, 2008, 29, 1216-1223.	5.7	63
141	Targeted Nanotherapeutics Encapsulating Liver X Receptor Agonist GW3965 Enhance Antiatherogenic Effects without Adverse Effects on Hepatic Lipid Metabolism in <i>Ldlr^{â^'/â^'}</i> Mice. Advanced Healthcare Materials, 2017, 6, 1700313.	3.9	63
142	Effect of PEG Pairing on the Efficiency of Cancer-Targeting Liposomes. Theranostics, 2015, 5, 746-754.	4.6	61
143	Sugar-Nanocapsules Imprinted with Microbial Molecular Patterns for mRNA Vaccination. Nano Letters, 2020, 20, 1499-1509.	4.5	61
144	Nanomedicine for safe healing of bone trauma: Opportunities and challenges. Biomaterials, 2017, 146, 168-182.	5.7	57

#	Article	IF	Citations
145	Nanomedicines for endothelial disorders. Nano Today, 2015, 10, 759-776.	6.2	49
146	Emerging Advances in Nanotheranostics with Intelligent Bioresponsive Systems. Theranostics, 2017, 7, 3915-3919.	4.6	48
147	Formulation/Preparation of Functionalized Nanoparticles for In Vivo Targeted Drug Delivery. Methods in Molecular Biology, 2009, 544, 589-598.	0.4	48
148	Theranostic Nanomedicine in the NIR-II Window: Classification, Fabrication, and Biomedical Applications. Chemical Reviews, 2022, 122, 5405-5407.	23.0	45
149	Hyper-cell-permeable micelles as a drug delivery carrier for effective cancer therapy. Biomaterials, 2017, 123, 118-126.	5.7	43
150	Engineering of Mature Human Induced Pluripotent Stem Cellâ€Derived Cardiomyocytes Using Substrates with Multiscale Topography. Advanced Functional Materials, 2018, 28, 1707378.	7.8	43
151	Dual Hypoxia-Targeting RNAi Nanomedicine for Precision Cancer Therapy. Nano Letters, 2020, 20, 4857-4863.	4.5	42
152	CD11c gene expression in hairy cell leukemia is dependent upon activation of the proto-oncogenes ras andjunD. Blood, 2003, 101, 4033-4041.	0.6	41
153	2D Monoelemental Germanene Quantum Dots: Synthesis as Robust Photothermal Agents for Photonic Cancer Nanomedicine. Angewandte Chemie, 2019, 131, 13539-13544.	1.6	41
154	Platelet mimicry. Nature, 2015, 526, 47-48.	13.7	40
155	A drug-delivery strategy for overcoming drug resistance in breast cancer through targeting of oncofetal fibronectin. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 713-722.	1.7	38
156	A Solvent-Free Thermosponge Nanoparticle Platform for Efficient Delivery of Labile Proteins. Nano Letters, 2014, 14, 6449-6455.	4.5	36
157	Levamisole inhibits intestinal Clâ^² secretion via basolateral K+ channel blockade. Gastroenterology, 1998, 114, 1257-1267.	0.6	32
158	Progress in siRNA Delivery Using Multifunctional Nanoparticles. Methods in Molecular Biology, 2010, 629, 53-67.	0.4	32
159	Drug delivery systems in urology—getting "smarter― Urology, 2006, 68, 463-469.	0.5	31
160	Design of Insulin-Loaded Nanoparticles Enabled by Multistep Control of Nanoprecipitation and Zinc Chelation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 11440-11450.	4.0	28
161	Development of Therapeutic Polymeric Nanoparticles for the Resolution of Inflammation. Advanced Healthcare Materials, 2014, 3, 1448-1456.	3.9	26
162	Drug Delivery Nanocarriers from a Fully Degradable PEGâ€Conjugated Polyester with a Reductionâ€Responsive Backbone. Chemistry - A European Journal, 2015, 21, 11325-11329.	1.7	26

#	Article	IF	CITATIONS
163	Nanoparticle protein corona evolution: from biological impact to biomarker discovery. Nanoscale, 2022, 14, 1606-1620.	2.8	25
164	Targeted delivery of protein arginine deiminase-4 inhibitors to limit arterial intimal NETosis and preserve endothelial integrity. Cardiovascular Research, 2021, 117, 2652-2663.	1.8	24
165	Multifunctional nanoparticles for prostate cancer therapy. Expert Review of Anticancer Therapy, 2009, 9, 211-221.	1.1	23
166	Nanoparticles targeting extra domain B of fibronectin-specific to the atherosclerotic lesion types III, IV, and V-enhance plaque detection and cargo delivery. Theranostics, 2018, 8, 6008-6024.	4.6	19
167	Nanostructure Engineering by Simple Tuning of Lipid Combinations. Angewandte Chemie - International Edition, 2020, 59, 6249-6252.	7.2	19
168	Analysis of the Human Plasma Proteome Using Multiâ€Nanoparticle Protein Corona for Detection of Alzheimer's Disease. Advanced Healthcare Materials, 2021, 10, e2000948.	3.9	19
169	Spontaneous Formation of Heterogeneous Patches on Polymer–Lipid Core–Shell Particle Surfaces during Selfâ€Assembly. Small, 2013, 9, 511-517.	5.2	17
170	Effects of bryostatin 1, a novel anticancer agent, on intestinal transport and barrier function: Role of protein kinase C. Surgery, 1998, 124, 380-387.	1.0	16
171	Synthesis and in vitro evaluation of a multifunctional and surface-switchable nanoemulsion platform. Chemical Communications, 2013, 49, 9392.	2.2	16
172	Cancer immunotherapy: Wound-bound checkpoint blockade. Nature Biomedical Engineering, 2017, 1, .	11.6	15
173	HER2-specific aptide conjugated magneto-nanoclusters for potential breast cancer imaging and therapy. Journal of Materials Chemistry B, 2013, 1, 4576.	2.9	14
174	CD43 gene expression is mediated by a nuclear factor which binds pyrimidine-rich single-stranded DNA. Nucleic Acids Research, 2000, 28, 2256-2267.	6.5	13
175	Design of a mechanical clutch-based needle-insertion device. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5540-5545.	3.3	13
176	Polymer- and Protein-Based Nanotechnologies for Cancer Theranostics. , 2014, , 419-436.		12
177	Drug loading augmentation in polymeric nanoparticles using a coaxial turbulent jet mixer: Yong investigator perspective. Journal of Colloid and Interface Science, 2019, 538, 45-50.	5.0	12
178	Staneneâ€Based Nanosheets for βâ€Elemene Delivery and Ultrasoundâ€Mediated Combination Cancer Therapy. Angewandte Chemie, 2021, 133, 7231-7240.	1.6	12
179	Selfâ€Propelled Microrockets to Capture and Isolate Circulating Tumor Cells. Angewandte Chemie - International Edition, 2011, 50, 7220-7221.	7.2	10
180	Ultraâ€pHâ€Responsive and Tumorâ€Penetrating Nanoplatform for Targeted siRNA Delivery with Robust Antiâ€Cancer Efficacy. Angewandte Chemie, 2016, 128, 7207-7210.	1.6	10

#	Article	IF	CITATIONS
181	Polymeric Nanoparticles Amenable to Simultaneous Installation of Exterior Targeting and Interior Therapeutic Proteins. Angewandte Chemie, 2016, 128, 3370-3373.	1.6	10
182	Using ligands to target cancer cells. Clinical Advances in Hematology and Oncology, 2012, 10, 543-4.	0.3	8
183	Flat Cell Culturing Surface May Cause Misinterpretation of Cellular Uptake of Nanoparticles. Advanced Biology, 2018, 2, 1800046.	3.0	7
184	Plattformen f $\tilde{A}\frac{1}{4}$ r die orale Insulinabgabe: Strategien zur Beseitigung der biologischen Barrieren. Angewandte Chemie, 2020, 132, 19955-19964.	1.6	5
185	Nanoparticle-Aptamer Bioconjugates for Targeted Antineoplastic Drug Delivery. American Journal of Drug Delivery, 2006, 4, 123-130.	0.6	4
186	Role of electrostatic interactions in protein loading in PLGA-PEG nanoparticles. , 2014, , .		4
187	Nanoscience and Nanotechnology Cross Borders. ACS Nano, 2017, 11, 1123-1126.	7.3	4
188	Microfluidic Synthesis of Polymeric Nanoparticles. , 2008, , .		3
189	Cancer Theranostics: Twoâ€Dimensional Antimoneneâ€Based Photonic Nanomedicine for Cancer Theranostics (Adv. Mater. 38/2018). Advanced Materials, 2018, 30, 1870283.	11.1	3
190	Fourth Annual Conference of the American Society for Nanomedicine. Journal of NeuroImmune Pharmacology, 2014, 9, 1-38.	2.1	2
191	2D Black Mica Nanosheets: Synthesis of Ultrathin Biotite Nanosheets as an Intelligent Theranostic Platform for Combination Cancer Therapy (Adv. Sci. 19/2019). Advanced Science, 2019, 6, 1970118.	5 . 6	2
192	Nanostructure Engineering by Simple Tuning of Lipid Combinations. Angewandte Chemie, 2020, 132, 6308-6311.	1.6	2
193	Innentitelbild: Antimonene Quantum Dots: Synthesis and Application as Nearâ€Infrared Photothermal Agents for Effective Cancer Therapy (Angew. Chem. 39/2017). Angewandte Chemie, 2017, 129, 11816-11816.	1.6	1
194	Biomedical Applications: Engineering of Mature Human Induced Pluripotent Stem Cellâ€Derived Cardiomyocytes Using Substrates with Multiscale Topography (Adv. Funct. Mater. 19/2018). Advanced Functional Materials, 2018, 28, 1870128.	7.8	1
195	Rýcktitelbild: Plattformen fýr die orale Insulinabgabe: Strategien zur Beseitigung der biologischen Barrieren (Angew. Chem. 45/2020). Angewandte Chemie, 2020, 132, 20424-20424.	1.6	1
196	Nanoparticle Design For Bone-Specific Chemotherapy and Microenvironmental Targeting In Multiple Myeloma. Blood, 2013, 122, 881-881.	0.6	1