List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1334870/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A New Intermolecular Interaction:  UnconventionalHydrogen Bonds with Elementâ^'Hydride Bonds as<br>ProtonAcceptor. Accounts of Chemical Research, 1996, 29, 348-354.                                                                 | 15.6 | 639       |
| 2  | Transition-Metal Systems in Biochemistry Studied by High-Accuracy Quantum Chemical Methods.<br>Chemical Reviews, 2000, 100, 421-438.                                                                                                 | 47.7 | 559       |
| 3  | Quantum Chemical Studies of Mechanisms for Metalloenzymes. Chemical Reviews, 2014, 114, 3601-3658.                                                                                                                                   | 47.7 | 494       |
| 4  | Hydration of Beryllium, Magnesium, Calcium, and Zinc Ions Using Density Functional Theory. Journal of Physical Chemistry A, 1998, 102, 219-228.                                                                                      | 2.5  | 487       |
| 5  | Structures and Energetics for O <sub>2</sub> Formation in Photosystem II. Accounts of Chemical Research, 2009, 42, 1871-1880.                                                                                                        | 15.6 | 485       |
| 6  | Computational Studies of [NiFe] and [FeFe] Hydrogenases. Chemical Reviews, 2007, 107, 4414-4435.                                                                                                                                     | 47.7 | 383       |
| 7  | Water oxidation mechanism in photosystem II, including oxidations, proton release pathways, O―O<br>bond formation and O2 release. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 1003-1019.                              | 1.0  | 335       |
| 8  | Mechanism of Câ^'H Activation by Diiron Methane Monooxygenases:Â Quantum Chemical Studies. Journal<br>of the American Chemical Society, 1997, 119, 3103-3113.                                                                        | 13.7 | 302       |
| 9  | Modeling Enzymatic Reactions Involving Transition Metals. Accounts of Chemical Research, 2006, 39, 729-738.                                                                                                                          | 15.6 | 301       |
| 10 | Manganese Oxyl Radical Intermediates and Oâ^'O Bond Formation in Photosynthetic Oxygen Evolution<br>and a Proposed Role for the Calcium Cofactor in Photosystem II. Journal of the American Chemical<br>Society, 1999, 121, 117-127. | 13.7 | 276       |
| 11 | Quantum Chemical Studies of Radical-Containing Enzymes. Chemical Reviews, 2003, 103, 2421-2456.                                                                                                                                      | 47.7 | 266       |
| 12 | Recent developments of the quantum chemical cluster approach for modeling enzyme reactions.<br>Journal of Biological Inorganic Chemistry, 2009, 14, 643-651.                                                                         | 2.6  | 257       |
| 13 | DENSITYFUNCTIONALTHEORY OFBIOLOGICALLYRELEVANTMETALCENTERS. Annual Review of Physical Chemistry, 1999, 50, 221-249.                                                                                                                  | 10.8 | 250       |
| 14 | The performance of hybrid DFT for mechanisms involving transition metal complexes in enzymes.<br>Journal of Biological Inorganic Chemistry, 2006, 11, 695-701.                                                                       | 2.6  | 237       |
| 15 | Quantifying the effects of the self-interaction error in DFT: When do the delocalized states appear?.<br>Journal of Chemical Physics, 2005, 122, 224103.                                                                             | 3.0  | 230       |
| 16 | Electrocatalytic Water Oxidation by a Dinuclear Copper Complex in a Neutral Aqueous Solution.<br>Angewandte Chemie - International Edition, 2015, 54, 4909-4914.                                                                     | 13.8 | 228       |
| 17 | OO Bond Formation in the S4 State of the Oxygen-Evolving Complex in Photosystem II. Chemistry - A<br>European Journal, 2006, 12, 9217-9227.                                                                                         | 3.3  | 226       |
| 18 | A Structure onsistent Mechanism for Dioxygen Formation in Photosystem II. Chemistry - A European<br>Journal, 2008, 14, 8290-8302.                                                                                                    | 3.3  | 215       |

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Modeling Electron Transfer in Biochemistry:  A Quantum Chemical Study of Charge Separation in<br>Rhodobacter sphaeroides and Photosystem II. Journal of the American Chemical Society, 1998, 120,<br>8812-8824.               | 13.7 | 207       |
| 20 | Quantum Chemical Studies of Proton-Coupled Electron Transfer in Metalloenzymes. Chemical<br>Reviews, 2010, 110, 7040-7061.                                                                                                    | 47.7 | 186       |
| 21 | Significant van der Waals Effects in Transition Metal Complexes. Journal of Chemical Theory and Computation, 2010, 6, 2040-2044.                                                                                              | 5.3  | 185       |
| 22 | Mechanism of Hâ^'H Activation by Nickelâ^'Iron Hydrogenase. Journal of the American Chemical Society,<br>1998, 120, 548-555.                                                                                                  | 13.7 | 173       |
| 23 | Mechanisms of metalloenzymes studied by quantum chemical methods. Quarterly Reviews of<br>Biophysics, 2003, 36, 91-145.                                                                                                       | 5.7  | 171       |
| 24 | Theoretical Models for the Oxygen Radical Mechanism of Water Oxidation and of the Water Oxidizing Complex of Photosystem II. Inorganic Chemistry, 2000, 39, 2923-2935.                                                        | 4.0  | 154       |
| 25 | Mechanisms for proton release during water oxidation in the S2 to S3 and S3 to S4 transitions in photosystem II. Physical Chemistry Chemical Physics, 2012, 14, 4849.                                                         | 2.8  | 149       |
| 26 | Modeling the Solvent Sphere:Â Mechanism of the Shilov Reaction. Journal of the American Chemical Society, 1996, 118, 4442-4450.                                                                                               | 13.7 | 145       |
| 27 | A Density Functional Study of Oâ^'O Bond Cleavage for a Biomimetic Non-Heme Iron Complex<br>Demonstrating an FeV-Intermediate. Journal of the American Chemical Society, 2002, 124, 11056-11063.                              | 13.7 | 145       |
| 28 | Theoretical Model Studies of the Iron Dimer Complex of MMO and RNR. Inorganic Chemistry, 1999, 38, 2880-2889.                                                                                                                 | 4.0  | 144       |
| 29 | Mechanism of Dioxygen Activation in 2-Oxoglutarate-Dependent Enzymes: A Hybrid DFT Study.<br>Chemistry - A European Journal, 2004, 10, 1031-1041.                                                                             | 3.3  | 144       |
| 30 | Hydrogen Atom Transfer in Ribonucleotide Reductase (RNR). Journal of Physical Chemistry B, 1998, 102, 10622-10629.                                                                                                            | 2.6  | 138       |
| 31 | Reaction Mechanism of Compound I Formation in Heme Peroxidases:Â A Density Functional Theory<br>Study. Journal of the American Chemical Society, 1999, 121, 10178-10185.                                                      | 13.7 | 132       |
| 32 | Proton Pumping Mechanism in Cytochrome c Oxidase. Journal of Physical Chemistry A, 2008, 112, 12772-12780.                                                                                                                    | 2.5  | 127       |
| 33 | A theoretical study of the mechanism for peptide hydrolysis by thermolysin. Journal of Biological<br>Inorganic Chemistry, 2002, 7, 284-298.                                                                                   | 2.6  | 126       |
| 34 | A Mechanism from Quantum Chemical Studies for Methane Formation in Methanogenesis. Journal of the American Chemical Society, 2002, 124, 4039-4049.                                                                            | 13.7 | 125       |
| 35 | Mechanism for Catechol Ring-Cleavage by Non-Heme Iron Extradiol Dioxygenases. Journal of the<br>American Chemical Society, 2004, 126, 8919-8932.                                                                              | 13.7 | 125       |
| 36 | A Quantum Chemical Study of Hydrogen Abstraction from Manganese-Coordinated Water by a Tyrosyl<br>Radical:Â A Model for Water Oxidation in Photosystem II. Journal of the American Chemical Society,<br>1997, 119, 8285-8292. | 13.7 | 124       |

| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Oxyl Radical Required for Oâ^'O Bond Formation in Synthetic Mn-Catalyst. Inorganic Chemistry, 2004,<br>43, 264-274.                                                                                                                  | 4.0  | 120       |
| 38 | Modeling Cytochrome Oxidase:Â A Quantum Chemical Study of the Oâ^'O Bond Cleavage Mechanism.<br>Journal of the American Chemical Society, 2000, 122, 12848-12858.                                                                    | 13.7 | 112       |
| 39 | Theoretical Study of the Substrate Mechanism of Ribonucleotide Reductase. Journal of the American<br>Chemical Society, 1998, 120, 8417-8429.                                                                                         | 13.7 | 110       |
| 40 | Density Functional Study of the Mechanism of the Palladium(II)-Catalyzed Ethylene Polymerization Reaction. Organometallics, 1997, 16, 1933-1945.                                                                                     | 2.3  | 109       |
| 41 | Water Oxidation Mechanism for Synthetic Co–Oxides with Small Nuclearity. Journal of the American<br>Chemical Society, 2013, 135, 13804-13813.                                                                                        | 13.7 | 106       |
| 42 | A theoretical study of the cis-dihydroxylation mechanism in naphthalene 1,2-dioxygenase. Journal of<br>Biological Inorganic Chemistry, 2004, 9, 439-452.                                                                             | 2.6  | 104       |
| 43 | Comparisons of results from parametrized configuration interaction (PClâ€80) and from hybrid density functional theory with experiments for first row transition metal compounds. Journal of Chemical Physics, 1996, 104, 9546-9554. | 3.0  | 103       |
| 44 | Substrate Water Exchange for the Oxygen Evolving Complex in PSII in the S <sub>1</sub> ,<br>S <sub>2</sub> , and S <sub>3</sub> States. Journal of the American Chemical Society, 2013, 135,<br>9442-9449.                           | 13.7 | 102       |
| 45 | A Quantum Chemical Approach to the Study of Reaction Mechanisms of Redox-Active Metalloenzymes.<br>Journal of Physical Chemistry B, 2001, 105, 9375-9386.                                                                            | 2.6  | 101       |
| 46 | Metal-Bridging Mechanism for Oâ^'O Bond Cleavage in Cytochrome c Oxidase. Inorganic Chemistry, 2003, 42, 5231-5243.                                                                                                                  | 4.0  | 99        |
| 47 | Nitrogen Fixation by Nitrogenases:  A Quantum Chemical Study. Journal of Physical Chemistry B, 1998,<br>102, 1615-1623.                                                                                                              | 2.6  | 97        |
| 48 | A theoretical study on the binding of O2, NO and CO to heme proteins. Journal of Inorganic<br>Biochemistry, 2005, 99, 949-958.                                                                                                       | 3.5  | 97        |
| 49 | Alternative mechanisms for O <sub>2</sub> release and O–O bond formation in the oxygen evolving complex of photosystem II. Physical Chemistry Chemical Physics, 2015, 17, 12168-12174.                                               | 2.8  | 97        |
| 50 | The C–H activation reaction of methane for all transition metal atoms from the three transition rows. Journal of Chemical Physics, 1997, 107, 4318-4328.                                                                             | 3.0  | 96        |
| 51 | An Autocatalytic Mechanism for NiFe-Hydrogenase: Reduction to Ni(I) Followed by Oxidative Addition.<br>Biochemistry, 2009, 48, 1056-1066.                                                                                            | 2.5  | 93        |
| 52 | Recent theoretical studies of water oxidation in photosystem II. Journal of Photochemistry and Photobiology B: Biology, 2011, 104, 94-99.                                                                                            | 3.8  | 92        |
| 53 | Model Calculations Suggest that the Central Carbon in the FeMo-Cofactor of Nitrogenase Becomes<br>Protonated in the Process of Nitrogen Fixation. Journal of the American Chemical Society, 2016, 138,<br>10485-10495.               | 13.7 | 92        |
| 54 | Theoretical Study of the Energetics of Proton Pumping and Oxygen Reduction in Cytochrome Oxidase.<br>Journal of Physical Chemistry B, 2003, 107, 10946-10955.                                                                        | 2.6  | 90        |

| #  | Article                                                                                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | The Effect of Backbone Constraints: The Case of Water Oxidation by the Oxygenâ€Evolving Complex in PSII. ChemPhysChem, 2011, 12, 3274-3280.                                                                                                                                                                                        | 2.1  | 90        |
| 56 | 4-Hydroxyphenylpyruvate Dioxygenase:  A Hybrid Density Functional Study of the Catalytic Reaction<br>Mechanism. Biochemistry, 2004, 43, 12331-12342.                                                                                                                                                                               | 2.5  | 88        |
| 57 | Theoretical Studies of Oâ^'O Bond Formation in Photosystem II. Inorganic Chemistry, 2008, 47, 1779-1786.                                                                                                                                                                                                                           | 4.0  | 87        |
| 58 | Quantum chemical studies of dioxygen activation by mononuclear non-heme iron enzymes with the 2-His-1-carboxylate facial triad. Dalton Transactions, 2004, , 3153.                                                                                                                                                                 | 3.3  | 84        |
| 59 | Theoretical investigations of structure and mechanism of the oxygen-evolving complex in PSII.<br>Physical Chemistry Chemical Physics, 2004, 6, 4772.                                                                                                                                                                               | 2.8  | 84        |
| 60 | Mechanism for N <sub>2</sub> O Generation in Bacterial Nitric Oxide Reductase: A Quantum Chemical Study. Biochemistry, 2012, 51, 5173-5186.                                                                                                                                                                                        | 2.5  | 81        |
| 61 | Quantum chemical studies of manganese centers in biology. Current Opinion in Chemical Biology, 2002, 6, 227-235.                                                                                                                                                                                                                   | 6.1  | 80        |
| 62 | The catalytic cycle of tyrosinase: peroxide attack on the phenolate ring followed by O-O bond cleavage. Journal of Biological Inorganic Chemistry, 2003, 8, 567-576.                                                                                                                                                               | 2.6  | 80        |
| 63 | Reaction Mechanism of Apocarotenoid Oxygenase (ACO): A DFT Study. Chemistry - A European Journal, 2008, 14, 2264-2276.                                                                                                                                                                                                             | 3.3  | 79        |
| 64 | A Density Functional Study on a Biomimetic Non-Heme Iron Catalyst: Insights into Alkane<br>Hydroxylation by a Formally HO?FeV?O Oxidant. Chemistry - A European Journal, 2005, 11, 692-705.                                                                                                                                        | 3.3  | 78        |
| 65 | An Energetic Comparison of Different Models for the Oxygen Evolving Complex of Photosystem II.<br>Journal of the American Chemical Society, 2009, 131, 18238-18239.                                                                                                                                                                | 13.7 | 77        |
| 66 | On the accuracy of gradient corrected density functional methods for transition metal complexes.<br>Journal of Chemical Physics, 1995, 102, 872-878.                                                                                                                                                                               | 3.0  | 74        |
| 67 | Density Functional Calculations of <sup>55</sup> Mn, <sup>14</sup> N and <sup>13</sup> C Electron<br>Paramagnetic Resonance Parameters Support an Energetically Feasible Model System for the<br>S <sub>2</sub> State of the Oxygenâ€Evolving Complex of Photosystem II. Chemistry - A European<br>Iournal. 2010. 16. 10424-10438. | 3.3  | 73        |
| 68 | Quantum chemical modeling of CO oxidation by the active site of molybdenum CO dehydrogenase.<br>Journal of Computational Chemistry, 2005, 26, 888-898.                                                                                                                                                                             | 3.3  | 72        |
| 69 | Hydrogen transfer in the presence of amino acid radicals. Theoretical Chemistry Accounts, 1997, 97, 289-300.                                                                                                                                                                                                                       | 1.4  | 71        |
| 70 | A Quantum Chemical Study of the Mechanism of Tyrosinase. Journal of Physical Chemistry B, 1999, 103, 1193-1202.                                                                                                                                                                                                                    | 2.6  | 71        |
| 71 | Activation of Triplet Dioxygen by Glucose Oxidase:  Spinâ~'Orbit Coupling in the Superoxide Ion. Journal of Physical Chemistry B, 2002, 106, 3742-3750.                                                                                                                                                                            | 2.6  | 71        |
| 72 | Catalysis by methyl-coenzyme M reductase: a theoretical study for heterodisulfide product formation.<br>Journal of Biological Inorganic Chemistry, 2003, 8, 653-662.                                                                                                                                                               | 2.6  | 70        |

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Mechanism of Aromatic Hydroxylation by an Activated FeIVi£¾O Core in Tetrahydrobiopterin-Dependent<br>Hydroxylases. Chemistry - A European Journal, 2003, 9, 4055-4067.                                   | 3.3  | 69        |
| 74 | Catalytic Reaction Mechanism of Homogentisate Dioxygenase:Â A Hybrid DFT Study. Journal of the<br>American Chemical Society, 2005, 127, 17303-17314.                                                      | 13.7 | 69        |
| 75 | Energy diagrams and mechanism for proton pumping in cytochrome c oxidase. Biochimica Et Biophysica<br>Acta - Bioenergetics, 2007, 1767, 1143-1156.                                                        | 1.0  | 69        |
| 76 | Substituent effects on OH bond strength and hyperfine properties of phenol, as model for modified tyrosyl radicals in proteins. International Journal of Quantum Chemistry, 2000, 76, 714-723.            | 2.0  | 68        |
| 77 | The mechanism for dioxygen formation in PSII studied by quantum chemical methods. Photochemical and Photobiological Sciences, 2005, 4, 1035.                                                              | 2.9  | 68        |
| 78 | First row benchmark tests of the parametrized configuration interaction with parameter X (PClâ€X) scheme. Journal of Chemical Physics, 1995, 102, 5377-5386.                                              | 3.0  | 66        |
| 79 | Quantum chemistry applied to the mechanisms of transition metal containing enzymes—Cytochromec oxidase, a particularly challenging case. Journal of Computational Chemistry, 2006, 27, 1373-1384.         | 3.3  | 66        |
| 80 | Reduction of nitric oxide in bacterial nitric oxide reductase—a theoretical model study. Biochimica Et<br>Biophysica Acta - Bioenergetics, 2006, 1757, 240-252.                                           | 1.0  | 65        |
| 81 | Electronic Structure Calculations for Molecules Containing Transition Metals. Advances in Chemical Physics, 2007, , 333-387.                                                                              | 0.3  | 65        |
| 82 | A theoretical study of myoglobin working as a nitric oxide scavenger. Journal of Biological Inorganic<br>Chemistry, 2004, 9, 923-935.                                                                     | 2.6  | 64        |
| 83 | Dinuclear manganese complexes for water oxidation: evaluation of electronic effects and catalytic activity. Physical Chemistry Chemical Physics, 2014, 16, 11950.                                         | 2.8  | 64        |
| 84 | Nucleophilic water attack is not a possible mechanism for O–O bond formation in photosystem II.<br>Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4966-4968. | 7.1  | 64        |
| 85 | Mechanism of Dioxygen Cleavage in Tetrahydrobiopterin-Dependent Amino Acid Hydroxylases.<br>Chemistry - A European Journal, 2003, 9, 106-115.                                                             | 3.3  | 63        |
| 86 | Is the Bis-μ-Oxo Cu2(III,III) State an Intermediate in Tyrosinase?. Journal of the American Chemical Society,<br>2001, 123, 11819-11820.                                                                  | 13.7 | 61        |
| 87 | Reaction Mechanism of Water Oxidation Catalyzed by Iron Tetraamido Macrocyclic Ligand Complexes<br>– A DFT Study. European Journal of Inorganic Chemistry, 2014, 2014, 728-741.                           | 2.0  | 61        |
| 88 | The S <sub>2</sub> to S <sub>3</sub> transition for water oxidation in PSII (photosystem II), revisited.<br>Physical Chemistry Chemical Physics, 2018, 20, 22926-22931.                                   | 2.8  | 61        |
| 89 | Quantum Chemical Modeling of Homogeneous Water Oxidation Catalysis. ChemSusChem, 2017, 10, 4236-4263.                                                                                                     | 6.8  | 59        |
| 90 | The mechanism for proton pumping in cytochrome c oxidase from an electrostatic and quantum chemical perspective Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 495-505                        | 1.0  | 58        |

| #   | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Two, Three, and Four Water Chain Models for the Nucleophilic Addition Step in the Wacker Process.<br>The Journal of Physical Chemistry, 1996, 100, 14672-14680.                                                    | 2.9  | 57        |
| 92  | The mechanism for nitrogenase including all steps. Physical Chemistry Chemical Physics, 2019, 21, 15747-15759.                                                                                                     | 2.8  | 57        |
| 93  | New aspects of H2 activation by nickel-iron hydrogenase. International Journal of Quantum Chemistry, 1999, 73, 197-207.                                                                                            | 2.0  | 56        |
| 94  | Quantum Chemical Modeling of the Oxidation of Dihydroanthracene by the Biomimetic Nonheme Iron<br>Catalyst [(TMC)Fe <sup>IV</sup> (O)] <sup>2+</sup> . Journal of Physical Chemistry C, 2007, 111,<br>12397-12406. | 3.1  | 56        |
| 95  | Photosystem II Like Water Oxidation Mechanism in a Bioinspired Tetranuclear Manganese Complex.<br>Inorganic Chemistry, 2015, 54, 342-351.                                                                          | 4.0  | 56        |
| 96  | The catalytic cycle of catechol oxidase. Journal of Biological Inorganic Chemistry, 2004, 9, 577-590.                                                                                                              | 2.6  | 54        |
| 97  | A theoretical study on nitric oxide reductase activity in a ba3-type heme-copper oxidase. Biochimica Et<br>Biophysica Acta - Bioenergetics, 2006, 1757, 31-46.                                                     | 1.0  | 53        |
| 98  | Electronic and Magnetic Properties of Neutral and Charged Quinone and Plastoquinone Radicals.<br>Journal of Physical Chemistry A, 1997, 101, 9496-9504.                                                            | 2.5  | 51        |
| 99  | A quantum chemical study of the mechanism of manganese catalase. Theoretical Chemistry Accounts, 2001, 105, 197-206.                                                                                               | 1.4  | 51        |
| 100 | Catalytic Mechanism of Glyoxalase I:Â A Theoretical Study. Journal of the American Chemical Society, 2001, 123, 10280-10289.                                                                                       | 13.7 | 50        |
| 101 | Quantum chemical studies of redox-active enzymes. Faraday Discussions, 2003, 124, 289.                                                                                                                             | 3.2  | 50        |
| 102 | Quantum chemistry as a tool in bioenergetics. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797,<br>129-142.                                                                                               | 1.0  | 50        |
| 103 | Theoretical study of the reduction of nitric oxide in an A-type flavoprotein. Journal of Biological<br>Inorganic Chemistry, 2006, 12, 79-89.                                                                       | 2.6  | 49        |
| 104 | Theoretical studies of enzyme mechanisms involving high-valent iron intermediates. Journal of<br>Inorganic Biochemistry, 2006, 100, 727-743.                                                                       | 3.5  | 48        |
| 105 | Energy Diagrams for Water Oxidation in Photosystem II Using Different Density Functionals. Journal of Chemical Theory and Computation, 2014, 10, 268-272.                                                          | 5.3  | 47        |
| 106 | A comparison of the thermodynamics of O–O bond cleavage for dicopper complexes in enzymes and synthetic systems. Journal of Biological Inorganic Chemistry, 2003, 8, 577-585.                                      | 2.6  | 46        |
| 107 | Water oxidation energy diagrams for photosystem II for different protonation states, and the effect of removing calcium. Physical Chemistry Chemical Physics, 2014, 16, 11893.                                     | 2.8  | 46        |
| 108 | The mechanism of the Ni-Fe hydrogenases: a quantum chemical perspective. Journal of Biological<br>Inorganic Chemistry, 2001, 6, 460-466.                                                                           | 2.6  | 45        |

| #   | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Exploring pathways and barriers for coupled ET/PT in cytochrome c oxidase: A general framework for examining energetics and mechanistic alternatives. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 244-260.             | 1.0  | 45        |
| 110 | How Is Methane Formed and Oxidized Reversibly When Catalyzed by Niâ€Containing Methylâ€Coenzyme M<br>Reductase?. Chemistry - A European Journal, 2012, 18, 6309-6315.                                                                 | 3.3  | 45        |
| 111 | A comparative study of high-spin manganese and iron complexes. Theoretical Chemistry Accounts, 1997, 97, 72-80.                                                                                                                       | 1.4  | 44        |
| 112 | A Hybrid Density Functional Study of Oâ^'O Bond Cleavage and Phenyl Ring Hydroxylation for a<br>Biomimetic Non-Heme Iron Complex. Inorganic Chemistry, 2004, 43, 3277-3291.                                                           | 4.0  | 44        |
| 113 | A comparison of the reaction mechanisms of iron- and manganese-containing 2,3-HPCD: an important spin transition for manganese. Journal of Biological Inorganic Chemistry, 2008, 13, 929-940.                                         | 2.6  | 44        |
| 114 | How Is a Co-Methyl Intermediate Formed in the Reaction of Cobalamin-Dependent Methionine Synthase?<br>Theoretical Evidence for a Two-Step Methyl Cation Transfer Mechanism. Journal of Physical Chemistry<br>B, 2011, 115, 4066-4077. | 2.6  | 44        |
| 115 | A Systematic DFT Approach for Studying Mechanisms of Redox Active Enzymes. Frontiers in Chemistry, 2018, 6, 644.                                                                                                                      | 3.6  | 44        |
| 116 | Mechanism and energy diagram for O–O bond formation in the oxygen-evolving complex in<br>photosystem II. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363,<br>1221-1228.                             | 4.0  | 43        |
| 117 | Hybrid DFT Study of the Mechanism of Quercetin 2,3-Dioxygenase. Inorganic Chemistry, 2004, 43, 5944-5953.                                                                                                                             | 4.0  | 41        |
| 118 | Density Functional Theory Study of the Manganese-Containing Ribonucleotide Reductase from<br><i>Chlamydia trachomatis</i> : Why Manganese Is Needed in the Active Complex. Biochemistry, 2009, 48,<br>1878-1887.                      | 2.5  | 41        |
| 119 | Role of Substrate Positioning in the Catalytic Reaction of 4-Hydroxyphenylpyruvate Dioxygenase—A<br>QM/MM Study. Journal of the American Chemical Society, 2014, 136, 14472-14485.                                                    | 13.7 | 41        |
| 120 | Hydroxide instead of bicarbonate in the structure of the oxygen evolving complex. Journal of<br>Inorganic Biochemistry, 2006, 100, 1035-1040.                                                                                         | 3.5  | 40        |
| 121 | Ethylene Biosynthesis by 1-Aminocyclopropane-1-Carboxylic Acid Oxidase: A DFT Study. Chemistry - A<br>European Journal, 2006, 12, 8835-8846.                                                                                          | 3.3  | 40        |
| 122 | Mechanism of Water Oxidation Catalyzed by a Mononuclear Manganese Complex. ChemSusChem, 2017,<br>10, 903-911.                                                                                                                         | 6.8  | 40        |
| 123 | Agreement between experiment and hybrid DFT calculations for O?H bond dissociation enthalpies in manganese complexes. Journal of Computational Chemistry, 2005, 26, 661-667.                                                          | 3.3  | 39        |
| 124 | Theoretical Study of the Mechanism of the Nonheme Iron Enzyme EgtB. Inorganic Chemistry, 2017, 56, 3589-3599.                                                                                                                         | 4.0  | 39        |
| 125 | Intrinsic Aptitude of Cationic Methyl- and Ethylpalladium To Associate Ethylene and To Further<br>Undergo Subsequent Migratory Insertion. A Theoretical Study. Organometallics, 1996, 15, 5542-5550.                                  | 2.3  | 38        |
| 126 | Proton pumping in cytochrome c oxidase: Energetic requirements and the role of two proton channels. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1165-1177.                                                             | 1.0  | 38        |

| #   | Article                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Very Stable Ribonucleotide Substrate Radical Relevant for Class I Ribonucleotide Reductase. Journal of Physical Chemistry B, 2000, 104, 7502-7509.                                                                                                      | 2.6  | 37        |
| 128 | Theoretical study of the catalytic mechanism of catechol oxidase. Journal of Biological Inorganic Chemistry, 2007, 12, 1251-1264.                                                                                                                       | 2.6  | 37        |
| 129 | Is There a Ni-Methyl Intermediate in the Mechanism of Methyl-Coenzyme M Reductase?. Journal of the American Chemical Society, 2009, 131, 9912-9913.                                                                                                     | 13.7 | 37        |
| 130 | Harnessing Noninnocent Porphyrin Ligand to Circumvent Fe-Hydride Formation in the Selective<br>Fe-Catalyzed CO <sub>2</sub> Reduction in Aqueous Solution. ACS Catalysis, 2020, 10, 6332-6345.                                                          | 11.2 | 37        |
| 131 | Modeling water exchange on monomeric and dimeric Mn centers. Theoretical Chemistry Accounts, 2003, 110, 130-143.                                                                                                                                        | 1.4  | 35        |
| 132 | Which Oxidation State Initiates Dehalogenation in the B12-Dependent Enzyme NpRdhA: Co <sup>II</sup> ,<br>Co <sup>I</sup> , or Co <sup>O</sup> ?. ACS Catalysis, 2015, 5, 7350-7358.                                                                     | 11.2 | 35        |
| 133 | A comparison between artificial and natural water oxidation. Dalton Transactions, 2011, 40, 11296.                                                                                                                                                      | 3.3  | 34        |
| 134 | Which Oxidation State Leads to O–O Bond Formation in Cp*Ir(bpy)Cl-Catalyzed Water Oxidation, Ir(V),<br>Ir(VI), or Ir(VII)?. ACS Catalysis, 2014, 4, 3937-3949.                                                                                          | 11.2 | 34        |
| 135 | A quantum chemical approach for the mechanisms of redox-active metalloenzymes. RSC Advances, 2021, 11, 3495-3508.                                                                                                                                       | 3.6  | 34        |
| 136 | A theoretical study of the dioxygen activation by glucose oxidase and copper amine oxidase.<br>Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003, 1647, 173-178.                                                                            | 2.3  | 33        |
| 137 | Synthesis and Electronâ€Transfer Processes in a New Family of Ligands for Coupled Ruâ^'Mn <sub>2</sub><br>Complexes. ChemPlusChem, 2014, 79, 936-950.                                                                                                   | 2.8  | 33        |
| 138 | Efficient photochemical water oxidation by a dinuclear molecular ruthenium complex. Chemical<br>Communications, 2015, 51, 1862-1865.                                                                                                                    | 4.1  | 33        |
| 139 | A combined picture from theory and experiments on water oxidation, oxygen reduction and proton pumping. Dalton Transactions, 2009, , 5832.                                                                                                              | 3.3  | 32        |
| 140 | Water oxidation in photosystem II: oxygen release, proton release and the effect of chloride. Dalton<br>Transactions, 2009, , 10063.                                                                                                                    | 3.3  | 32        |
| 141 | How cytochrome c oxidase can pump four protons per oxygen molecule at high electrochemical gradient. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 364-376.                                                                                | 1.0  | 32        |
| 142 | Simulation of the isotropic EXAFS spectra for the S <sub>2</sub> and S <sub>3</sub> structures of the oxygen evolving complex in photosystem II. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3979-3984. | 7.1  | 32        |
| 143 | The mechanism of hydrogen evolution in Cu(bztpen)-catalysed water reduction: a DFT study. Dalton<br>Transactions, 2015, 44, 9736-9739.                                                                                                                  | 3.3  | 32        |
| 144 | A Mechanistic Study of Isopenicillin N Formation Using Density Functional Theory. Journal of the<br>American Chemical Society, 2000, 122, 8539-8547.                                                                                                    | 13.7 | 31        |

| #   | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Class I ribonucleotide reductase revisited: The effect of removing a proton on Glu441. Journal of Computational Chemistry, 2004, 25, 311-321.                                                                                                 | 3.3  | 31        |
| 146 | Theoretical study of the catalytic reaction mechanism of MndD. Journal of Biological Inorganic Chemistry, 2006, 11, 571-585.                                                                                                                  | 2.6  | 31        |
| 147 | Theoretical study of the mechanism of peptide ring formation in green fluorescent protein.<br>International Journal of Quantum Chemistry, 2001, 81, 169-186.                                                                                  | 2.0  | 30        |
| 148 | Modeling Near-Edge Fine Structure X-ray Spectra of the Manganese Catalytic Site for Water Oxidation in Photosystem II. Journal of the American Chemical Society, 2012, 134, 17157-17167.                                                      | 13.7 | 30        |
| 149 | Important roles of tyrosines in Photosystem II and cytochrome oxidase. Biochimica Et Biophysica Acta -<br>Bioenergetics, 2004, 1655, 45-50.                                                                                                   | 1.0  | 29        |
| 150 | Origin of Solvent Acceleration in Organolithium Metalâ^'Halogen Exchange Reactions.<br>Organometallics, 1997, 16, 6021-6023.                                                                                                                  | 2.3  | 28        |
| 151 | Quantifying the effects of the self-interaction error in density functional theory: When do the<br>delocalized states appear? II. Iron-oxo complexes and closed-shell substrate molecules. Journal of<br>Chemical Physics, 2008, 129, 154301. | 3.0  | 28        |
| 152 | An investigation of possible competing mechanisms for Ni-containing methyl–coenzyme M reductase.<br>Physical Chemistry Chemical Physics, 2014, 16, 14029.                                                                                     | 2.8  | 28        |
| 153 | Protonation of the binuclear active site in cytochrome c oxidase decreases the reduction potential of<br>CuB. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1173-1180.                                                           | 1.0  | 28        |
| 154 | Molecular ruthenium water oxidation catalysts carrying non-innocent ligands: mechanistic insight<br>through structure–activity relationships and quantum chemical calculations. Catalysis Science and<br>Technology, 2016, 6, 1306-1319.      | 4.1  | 28        |
| 155 | Is there computational support for an unprotonated carbon in the E <sub>4</sub> state of nitrogenase?. Journal of Computational Chemistry, 2018, 39, 743-747.                                                                                 | 3.3  | 28        |
| 156 | A Major Structural Change of the Homocitrate Ligand of Probable Importance for the Nitrogenase<br>Mechanism. Inorganic Chemistry, 2018, 57, 1090-1095.                                                                                        | 4.0  | 28        |
| 157 | A Quantum Chemical Study of the Synthesis of Prostaglandin G2by the Cyclooxygenase Active Site in<br>Prostaglandin Endoperoxide H Synthase 1. Journal of Physical Chemistry B, 2003, 107, 3297-3308.                                          | 2.6  | 27        |
| 158 | Oxygen Activation by Rieske Non-Heme Iron Oxygenases, a Theoretical Insight. Journal of Physical<br>Chemistry B, 2004, 108, 13031-13041.                                                                                                      | 2.6  | 27        |
| 159 | Catalytic Reaction Mechanism of Oxalate Oxidase (Germin). A Hybrid DFT Study. Journal of Chemical<br>Theory and Computation, 2005, 1, 686-693.                                                                                                | 5.3  | 26        |
| 160 | Comparison of QM-only and QM/MM models for the mechanism of tyrosinase. Faraday Discussions, 2011, 148, 109-117.                                                                                                                              | 3.2  | 26        |
| 161 | Oxygen cleavage with manganese and iron in ribonucleotide reductase from Chlamydia trachomatis.<br>Journal of Biological Inorganic Chemistry, 2011, 16, 553-565.                                                                              | 2.6  | 26        |
| 162 | Metal Oxidation States for the O–O Bond Formation in the Water Oxidation Catalyzed by a<br>Pentanuclear Iron Complex. ACS Catalysis, 2018, 8, 11671-11678.                                                                                    | 11.2 | 26        |

| #   | Article                                                                                                                                                                                                                                                                    | IF                 | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------|
| 163 | DFT Study on the Catalytic Reactivity of a Functional Model Complex for Intradiol-Cleaving<br>Dioxygenases. Journal of Physical Chemistry B, 2010, 114, 5878-5885.                                                                                                         | 2.6                | 25        |
| 164 | Why is the reduction of NO in cytochrome c dependent nitric oxide reductase (cNOR) not electrogenic?. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 826-833.                                                                                                  | 1.0                | 25        |
| 165 | Mechanism and selectivity of the dinuclear iron benzoyl-coenzyme A epoxidase BoxB. Chemical Science, 2015, 6, 2754-2764.                                                                                                                                                   | 7.4                | 25        |
| 166 | Unraveling the Mechanism and Regioselectivity of the B12â€Đependent Reductive Dehalogenase PceA.<br>Chemistry - A European Journal, 2016, 22, 12391-12399.                                                                                                                 | 3.3                | 25        |
| 167 | Spin Transition during H2O2Formation in the Oxidative Half-Reaction of Copper Amine Oxidases.<br>Journal of Physical Chemistry B, 2004, 108, 13882-13892.                                                                                                                  | 2.6                | 24        |
| 168 | N–O bond cleavage mechanism(s) in nitrous oxide reductase. Journal of Biological Inorganic<br>Chemistry, 2012, 17, 687-698.                                                                                                                                                | 2.6                | 24        |
| 169 | A Dinuclear Rutheniumâ€Based Water Oxidation Catalyst: Use of Nonâ€Innocent Ligand Frameworks for<br>Promoting Multiâ€Electron Reactions. Chemistry - A European Journal, 2015, 21, 10039-10048.                                                                           | 3.3                | 22        |
| 170 | Improved free energy profile for reduction of NO in cytochrome c dependent nitric oxide reductase<br>(cNOR). Journal of Computational Chemistry, 2016, 37, 1810-1818.                                                                                                      | 3.3                | 22        |
| 171 | Methods and models for studying mechanisms of redox-active enzymes. Philosophical Transactions<br>Series A, Mathematical, Physical, and Engineering Sciences, 2005, 363, 847-860.                                                                                          | 3.4                | 21        |
| 172 | Theoretical Study of the Oxidation of Phenolates by the<br>[Cu <sub>2</sub> O <sub>2</sub> ( <i>N</i> , <i>N</i> â€2â€diâ€ <i>tert</i> â€butylethylenediamine) <sub>2Complex. Chemistry - A European Journal, 2013, 19, 1942-1954.</sub>                                   | >] <b>ssu</b> p>2- | ⊦<⊉soup>  |
| 173 | Mechanism for OO bond formation in a biomimetic tetranuclear manganese cluster – A density<br>functional theory study. Journal of Photochemistry and Photobiology B: Biology, 2015, 152, 162-172.                                                                          | 3.8                | 20        |
| 174 | A Mechanism for Nitrogenase Including Loss of a Sulfide. Chemistry - A European Journal, 2022, 28, e202103745.                                                                                                                                                             | 3.3                | 20        |
| 175 | The Dehydration Step in the Enzyme-Coenzyme-B12 Catalyzed Diol Dehydrase Reaction of<br>1,2-Dihydroxyethane Utilizing a Hydrogen-Bonded Carboxylic Acid Group as an Additional Cofactor:  A<br>Computational Study. Journal of Physical Chemistry B, 1999, 103, 7531-7541. | 2.6                | 18        |
| 176 | Theoretical Study of the Mechanism for the Oxidative Half-Reaction of Copper Amine Oxidase (CAO).<br>Journal of Physical Chemistry B, 2003, 107, 3944-3953.                                                                                                                | 2.6                | 18        |
| 177 | Energetics for the Mechanism of Nickel-Containing Carbon Monoxide Dehydrogenase. Inorganic<br>Chemistry, 2019, 58, 7931-7938.                                                                                                                                              | 4.0                | 18        |
| 178 | Theoretical study of the hydroxylation of phenolates by the Cu2O2(N,N′-dimethylethylenediamine)2 2+<br>complex. Journal of Biological Inorganic Chemistry, 2009, 14, 229-242.                                                                                              | 2.6                | 17        |
| 179 | A density functional theory study of a concerted mechanism for proton exchange between amino acid side chains and water. Theoretical Chemistry Accounts, 2000, 104, 461-470.                                                                                               | 1.4                | 16        |
| 180 | A Theoretical Study of the Mechanism for the Reductive Half-Reaction of Pea Seedling Amine Oxidase<br>(PSAO). Journal of Physical Chemistry B, 2001, 105, 4400-4408.                                                                                                       | 2.6                | 16        |

| #   | Article                                                                                                                                                                            | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | On the observation of a gem diol intermediate after O–O bond cleavage by extradiol dioxygenases. A<br>hybrid DFT study. Journal of Molecular Modeling, 2010, 16, 1673-1677.        | 1.8  | 16        |
| 182 | The Energetics of Hydrogen Molecule Oxidation in NiFe-hydrogenase. ACS Catalysis, 2020, 10, 5603-5613.                                                                             | 11.2 | 16        |
| 183 | Optimized Spin Crossings and Transition States for Short-range Electron Transfer in Transition Metal<br>Dimers. Journal of Physical Chemistry B, 2005, 109, 10513-10520.           | 2.6  | 15        |
| 184 | Chemical and Photochemical Water Oxidation Mediated by an Efficient Single‣ite Ruthenium Catalyst.<br>ChemSusChem, 2016, 9, 3448-3456.                                             | 6.8  | 15        |
| 185 | On the mechanism of water oxidation catalyzed by a dinuclear ruthenium complex: a quantum chemical study. Catalysis Science and Technology, 2016, 6, 5031-5041.                    | 4.1  | 15        |
| 186 | Metal–Ligand Cooperation in Single-Site Ruthenium Water Oxidation Catalysts: A Combined<br>Experimental and Quantum Chemical Approach. Inorganic Chemistry, 2018, 57, 10881-10895. | 4.0  | 15        |
| 187 | Theoretical Studies of Nickel-Dependent Enzymes. Inorganics, 2019, 7, 95.                                                                                                          | 2.7  | 15        |
| 188 | A quantum chemical study of tyrosyl reduction and O—O bond formation in photosystem II.<br>Molecular Physics, 2003, 101, 323-333.                                                  | 1.7  | 14        |
| 189 | Quantum Chemical Study of the Mechanism of Water Oxidation Catalyzed by a Heterotrinuclear<br>Ru <sub>2</sub> Mn Complex. ChemSusChem, 2019, 12, 1101-1110.                        | 6.8  | 13        |
| 190 | Theoretical study of the hydroxylation of phenols mediated by an end-on bound superoxo–copper(II)<br>complex. Journal of Biological Inorganic Chemistry, 2009, 14, 273-285.        | 2.6  | 12        |
| 191 | The alkenyl migration mechanism catalyzed by extradiol dioxygenases: a hybrid DFT study. Journal of<br>Biological Inorganic Chemistry, 2012, 17, 881-890.                          | 2.6  | 12        |
| 192 | Models for the description of the H3O+ and OH? ions in water. Journal of Computational Chemistry, 1996, 17, 1099-1107.                                                             | 3.3  | 11        |
| 193 | Bondâ€dissociation using hybrid DFT. International Journal of Quantum Chemistry, 2010, 110, 317-322.                                                                               | 2.0  | 11        |
| 194 | A comparison of two-electron chemistry performed by the manganese and iron heterodimer and homodimers. Journal of Biological Inorganic Chemistry, 2012, 17, 363-373.               | 2.6  | 11        |
| 195 | Water Oxidation for Simplified Models of the Oxygenâ€Evolving Complex in Photosystemâ€II. Chemistry - A<br>European Journal, 2015, 21, 18821-18827.                                | 3.3  | 11        |
| 196 | Insights into the Chemical Reactivity in Acetyl-CoA Synthase. Inorganic Chemistry, 2020, 59, 15167-15179.                                                                          | 4.0  | 11        |
| 197 | Calculating Bond Strengths for Transition-Metal Complexes. ACS Symposium Series, 1998, , 197-211.                                                                                  | 0.5  | 10        |
| 198 | Ligands with radical character for high oxidation states in manganese and iron complexes. Molecular<br>Physics, 1999, 96, 571-581.                                                 | 1.7  | 10        |

| #   | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Density Functional Study of the O2Binding to [Cul(TPAR)]+(TPA = Tris(2-pyridylmethyl)amine) in THF and EtCN. Inorganic Chemistry, 2006, 45, 1491-1497.                                                         | 4.0 | 10        |
| 200 | Mutations in the Dâ€channel of cytochrome <i>c</i> oxidase causes leakage of the proton pump. FEBS<br>Letters, 2014, 588, 545-548.                                                                             | 2.8 | 10        |
| 201 | The active <scp>E4</scp> structure of nitrogenase studied with different <scp>DFT</scp> functionals. Journal of Computational Chemistry, 2021, 42, 81-85.                                                      | 3.3 | 10        |
| 202 | Consequences of the Formation of an Organometallic Exciplex [Hg(η2-arene)] in<br>Mercury-Photosensitized Reactions of Arenes:Â Câ^'C, Câ^'O, and Câ^'N Bond Cleavage. Organometallics,<br>1996, 15, 1157-1165. | 2.3 | 8         |
| 203 | A Theoretical Study of the Recently Suggested Mn <sup>VII</sup> Mechanism for O–O Bond Formation in Photosystem II. Journal of Physical Chemistry A, 2020, 124, 8011-8018.                                     | 2.5 | 8         |
| 204 | Theoretical Study of O <sub>2</sub> Reduction and Water Oxidation in Multicopper Oxidases. Journal of Physical Chemistry A, 2020, 124, 5849-5855.                                                              | 2.5 | 8         |
| 205 | Activation of Dimanganese Class Ib Ribonucleotide Reductase by Hydrogen Peroxide: Mechanistic<br>Insights from Density Functional Theory. Inorganic Chemistry, 2013, 52, 4173-4184.                            | 4.0 | 7         |
| 206 | Mechanism of the Dinuclear Iron Enzymepâ€Aminobenzoate Nâ€oxygenase from Density Functional<br>Calculations. ChemCatChem, 2019, 11, 601-613.                                                                   | 3.7 | 7         |
| 207 | Cluster size convergence for the energetics of the oxygen evolving complex in PSII. Journal of Computational Chemistry, 2017, 38, 2157-2160.                                                                   | 3.3 | 6         |
| 208 | Energetics for CO <sub>2</sub> Reduction by Molybdenum-Containing Formate Dehydrogenase.<br>Journal of Physical Chemistry B, 2022, 126, 1728-1733.                                                             | 2.6 | 6         |
| 209 | Transition States in Catalysis and Biochemistry. ACS Symposium Series, 1999, , 49-60.                                                                                                                          | 0.5 | 5         |
| 210 | Energetics for Proton Reduction in FeFe Hydrogenase. Journal of Physical Chemistry A, 2020, 124, 10540-10549.                                                                                                  | 2.5 | 5         |
| 211 | Oxygen chemisorption on metal surfaces using the cluster model: Basis set effects. Theoretica Chimica Acta, 1991, 79, 413-418.                                                                                 | 0.8 | 4         |
| 212 | A comparison of the mechanism for the reductive half-reaction between pea seedling and other copper amine oxidases (CAOs). Journal of Computational Chemistry, 2003, 24, 1599-1609.                            | 3.3 | 4         |
| 213 | Theoretical study of the mechanism of the manganese catalase KatB. Journal of Biological Inorganic Chemistry, 2019, 24, 103-115.                                                                               | 2.6 | 4         |
| 214 | Phosphate Hydrolysis by the Fe <sub>2</sub> –Ca <sub>3</sub> -Dependent Alkaline Phosphatase PhoX:<br>Mechanistic Insights from DFT calculations. Inorganic Chemistry, 2015, 54, 11941-11947.                  | 4.0 | 3         |
| 215 | Substituent effects on OH bond strength and hyperfine properties of phenol, as model for modified tyrosyl radicals in proteins. , 2000, 76, 714.                                                               |     | 1         |
| 216 | Theoretical study of the mechanism of peptide ring formation in green fluorescent protein.<br>International Journal of Quantum Chemistry, 2001, 81, 169-186.                                                   | 2.0 | 1         |

0

| Chapter 13. Theoretical Studies of Oâ $\in$ O and Hâ $\in$ H Bond Formation in Enzymes. RSC Energy and 0.5 0 | #   | Article                                                                                                                       | IF  | CITATIONS |
|--------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| Environment Series, 2011, , 387-407.                                                                         | 217 | Chapter 13. Theoretical Studies of O–O and H–H Bond Formation in Enzymes. RSC Energy and Environment Series, 2011, , 387-407. | 0.5 | 0         |

218 Reflections on Redox States in Enzymes. , 2019, , 83-90.