List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1334718/publications.pdf Version: 2024-02-01

		41627	35168
103	17,034	51	102
papers	citations	h-index	g-index
112	112	112	19043
all docs	docs citations	times ranked	citing authors

IEANNIE TIEE

#	Article	IF	CITATIONS
1	Unveiling RCOR1 as a rheostat at transcriptionally permissive chromatin. Nature Communications, 2022, 13, 1550.	5.8	5
2	Selective Xi reactivation and alternative methods to restore MECP2 function in Rett syndrome. Trends in Genetics, 2022, 38, 920-943.	2.9	13
3	Targeting Xist with compounds that disrupt RNA structure and X inactivation. Nature, 2022, 604, 160-166.	13.7	57
4	Xist Repeat A contributes to early recruitment of Polycomb complexes during X-chromosome inactivation. Developmental Cell, 2021, 56, 1236-1237.	3.1	2
5	Balancing cohesin eviction and retention prevents aberrant chromosomal interactions, Polycomb-mediated repression, and X-inactivation. Molecular Cell, 2021, 81, 1970-1987.e9.	4.5	30
6	iDRiP for the systematic discovery of proteins bound directly to noncoding RNA. Nature Protocols, 2021, 16, 3672-3694.	5.5	12
7	The combined action of CTCF and its testis-specific paralog BORIS is essential for spermatogenesis. Nature Communications, 2021, 12, 3846.	5.8	18
8	A disproportionate impact of G9a methyltransferase deficiency on the X chromosome. Genes and Development, 2021, 35, 1035-1054.	2.7	4
9	Revisiting the consequences of deleting the X inactivation center. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	12
10	Denaturing cross-linking immunoprecipitation to identify footprints for RNA-binding proteins. STAR Protocols, 2021, 2, 100819.	0.5	1
11	Motif-driven interactions between RNA and PRC2 are rheostats that regulate transcription elongation. Nature Structural and Molecular Biology, 2021, 28, 103-117.	3.6	32
12	Four-dimensional chromosome reconstruction elucidates the spatiotemporal reorganization of the mammalian X chromosome. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
13	Revealing RCOR2 as a regulatory component of nuclear speckles. Epigenetics and Chromatin, 2021, 14, 51.	1.8	5
14	Jpx RNA regulates CTCF anchor site selection and formation of chromosome loops. Cell, 2021, 184, 6157-6173.e24.	13.5	35
15	Targeting RNA with Small Molecules: Identification of Selective, RNA-Binding Small Molecules Occupying Drug-Like Chemical Space. SLAS Discovery, 2020, 25, 384-396.	1.4	73
16	Long Noncoding RNA Functionality Beyond Sequence: The Jpx Model. Journal of Molecular Biology, 2020, 432, 301-304.	2.0	3
17	B2 and ALU retrotransposons are self-cleaving ribozymes whose activity is enhanced by EZH2. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 415-425.	3.3	32
18	Decapping enzyme 1A breaks X-chromosome symmetry by controlling Tsix elongation and RNA turnover. Nature Cell Biology, 2020, 22, 1116-1129.	4.6	19

#	Article	IF	CITATIONS
19	Nucleoporin 153 links nuclear pore complex to chromatin architecture by mediating CTCF and cohesin binding. Nature Communications, 2020, 11, 2606.	5.8	46
20	Xist Repeats A and B Account for Two Distinct Phases of X Inactivation Establishment. Developmental Cell, 2020, 54, 21-32.e5.	3.1	37
21	Two- and three-color STORM analysis reveals higher-order assembly of leukotriene synthetic complexes on the nuclear envelope of murine neutrophils. Journal of Biological Chemistry, 2020, 295, 5761-5770.	1.6	3
22	Widespread organ tolerance to Xist loss and X reactivation except under chronic stress in the gut. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4262-4272.	3.3	35
23	PRC1 collaborates with SMCHD1 to fold the X-chromosome and spread Xist RNA between chromosome compartments. Nature Communications, 2019, 10, 2950.	5.8	56
24	The Firre locus produces a trans-acting RNA molecule that functions in hematopoiesis. Nature Communications, 2019, 10, 5137.	5.8	60
25	Role of the Chromosome Architectural Factor SMCHD1 in X-Chromosome Inactivation, Gene Regulation, and Disease in Humans. Genetics, 2019, 213, 685-703.	1.2	5
26	Aberrant mitochondrial function in patient-derived neural cells from CDKL5 deficiency disorder and Rett syndrome. Human Molecular Genetics, 2019, 28, 3625-3636.	1.4	19
27	Xist RNA antagonizes the SWI/SNF chromatin remodeler BRG1 on the inactive X chromosome. Nature Structural and Molecular Biology, 2019, 26, 96-109.	3.6	54
28	Xist Deletional Analysis Reveals an Interdependency between Xist RNA and Polycomb Complexes for Spreading along the Inactive X. Molecular Cell, 2019, 74, 101-117.e10.	4.5	125
29	<i>En bloc</i> and segmental deletions of human <i>XIST</i> reveal X chromosome inactivation-involving RNA elements. Nucleic Acids Research, 2019, 47, 3875-3887.	6.5	28
30	Exploration of CTCF post-translation modifications uncovers Serine-224 phosphorylation by PLK1 at pericentric regions during the G2/M transition. ELife, 2019, 8, .	2.8	18
31	A mixed modality approach towards Xi reactivation for Rett syndrome and other X-linked disorders. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E668-E675.	3.3	69
32	Megadomains and superloops form dynamically but are dispensable for X-chromosome inactivation and gene escape. Nature Communications, 2018, 9, 5004.	5.8	46
33	Multiple Histone Methyl-Lysine Readers Ensure Robust Development and Germline Immortality in <i>Caenorhabditis elegans</i> . Genetics, 2018, 210, 907-923.	1.2	15
34	Tsix–Mecp2 female mouse model for Rett syndrome reveals that low-level MECP2 expression extends life and improves neuromotor function. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8185-8190.	3.3	30
35	Loss of H3K27me3 Imprinting in Somatic Cell Nuclear Transfer Embryos Disrupts Post-Implantation Development. Cell Stem Cell, 2018, 23, 343-354.e5.	5.2	105
36	SMCHD1 Merges Chromosome Compartments and Assists Formation of Super-Structures on the Inactive X. Cell, 2018, 174, 406-421.e25.	13.5	139

#	Article	IF	CITATIONS
37	Screen for reactivation of MeCP2 on the inactive X chromosome identifies the BMP/TGF-β superfamily as a regulator of XIST expression. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1619-1624.	3.3	51
38	Polycomb Repressive Complex 1 Generates Discrete Compacted Domains that Change during Differentiation. Molecular Cell, 2017, 65, 432-446.e5.	4.5	287
39	The X chromosome in space. Nature Reviews Genetics, 2017, 18, 377-389.	7.7	112
40	Comment on "Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing― Science, 2017, 356, .	6.0	7
41	Denaturing CLIP, dCLIP, Pipeline Identifies Discrete RNA Footprints on Chromatin-Associated Proteins and Reveals that CBX7 Targets 3′ UTRs to Regulate mRNA Expression. Cell Systems, 2017, 5, 368-385.e15.	2.9	22
42	Genetic Intersection of Tsix and Hedgehog Signaling during the Initiation of X-Chromosome Inactivation. Developmental Cell, 2017, 43, 359-371.e6.	3.1	14
43	Repeat E anchors Xist RNA to the inactive X chromosomal compartment through CDKN1A-interacting protein (CIZ1). Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10654-10659.	3.3	97
44	PAR-TERRA directs homologous sex chromosome pairing. Nature Structural and Molecular Biology, 2017, 24, 620-631.	3.6	48
45	TERRA RNA Antagonizes ATRX and Protects Telomeres. Cell, 2017, 170, 86-101.e16.	13.5	201
46	Genome-wide identification of autosomal genes with allelic imbalance of chromatin state. PLoS ONE, 2017, 12, e0182568.	1.1	16
47	Destabilization of B2 RNA by EZH2 Activates the Stress Response. Cell, 2016, 167, 1788-1802.e13.	13.5	69
48	Female mice lacking Xist RNA show partial dosage compensation and survive to term. Genes and Development, 2016, 30, 1747-1760.	2.7	61
49	A high-throughput small molecule screen identifies synergism between DNA methylation and Aurora kinase pathways for X reactivation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14366-14371.	3.3	25
50	Functional Proteomic Analysis of Repressive Histone Methyltransferase Complexes Reveals ZNF518B as a G9A Regulator*. Molecular and Cellular Proteomics, 2015, 14, 1435-1446.	2.5	39
51	Toward a Consensus on the Binding Specificity and Promiscuity of PRC2 for RNA. Molecular Cell, 2015, 57, 552-558.	4.5	190
52	Locus-Specific Targeting to the X Chromosome Revealed by the RNA Interactome of CTCF. Molecular Cell, 2015, 57, 361-375.	4.5	153
53	A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. Science, 2015, 349, .	6.0	397
54	Allelic Imbalance Is a Prevalent and Tissue-Specific Feature of the Mouse Transcriptome. Genetics, 2015, 200, 537-549.	1.2	38

#	Article	IF	CITATIONS
55	The Xist RNA-PRC2 complex at 20-nm resolution reveals a low Xist stoichiometry and suggests a hit-and-run mechanism in mouse cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4216-25.	3.3	82
56	Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes. Nature Communications, 2015, 6, 7147.	5.8	329
57	<i>Xist</i> imprinting is promoted by the hemizygous (unpaired) state in the male germ line. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14415-14422.	3.3	22
58	Building the Connectivity Map of epigenetics: Chromatin profiling by quantitative targeted mass spectrometry. Methods, 2015, 72, 57-64.	1.9	55
59	ATRX Promotes Binding of PRC2 to Xist RNA and Polycomb Targets. FASEB Journal, 2015, 29, 361.3.	0.2	0
60	Practical murine hematopathology: a comparative review and implications for research. Comparative Medicine, 2015, 65, 96-113.	0.4	122
61	Coupling of X-Chromosome reactivation with the pluripotent stem cell state. RNA Biology, 2014, 11, 798-807.	1.5	32
62	Long noncoding RNAs: fresh perspectives into the RNA world. Trends in Biochemical Sciences, 2014, 39, 35-43.	3.7	312
63	BRCA1 establishes DNA damage signaling and pericentric heterochromatin of the X chromosome in male meiosis. Journal of Cell Biology, 2014, 205, 663-675.	2.3	74
64	ATRX Directs Binding of PRC2 to Xist RNA and Polycomb Targets. Cell, 2014, 159, 869-883.	13.5	182
65	LincRNA-p21 Activates p21 In cis to Promote Polycomb Target Gene Expression and to Enforce the G1/S Checkpoint. Molecular Cell, 2014, 54, 777-790.	4.5	412
66	Regulatory Interactions between RNA and Polycomb Repressive Complex 2. Molecular Cell, 2014, 55, 171-185.	4.5	253
67	High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation. Nature, 2013, 504, 465-469.	13.7	351
68	Tsix RNA and the Germline Factor, PRDM14, Link X Reactivation and Stem Cell Reprogramming. Molecular Cell, 2013, 52, 805-818.	4.5	96
69	X-Inactivation, Imprinting, and Long Noncoding RNAs in Health and Disease. Cell, 2013, 152, 1308-1323.	13.5	631
70	Long Noncoding RNAs: Past, Present, and Future. Genetics, 2013, 193, 651-669.	1.2	1,641
71	Jpx RNA Activates Xist by Evicting CTCF. Cell, 2013, 153, 1537-1551.	13.5	264
72	X-chromosome hyperactivation in mammals via nonlinear relationships between chromatin states and transcription. Nature Structural and Molecular Biology, 2012, 19, 56-61.	3.6	88

JEANNIE T LEE

#	Article	IF	CITATIONS
73	Epigenetic Regulation by Long Noncoding RNAs. Science, 2012, 338, 1435-1439.	6.0	1,159
74	Spreading of X chromosome inactivation via a hierarchy of defined Polycomb stations. Genome Research, 2012, 22, 1864-1876.	2.4	143
75	YY1 Tethers Xist RNA to the Inactive X Nucleation Center. Cell, 2011, 146, 119-133.	13.5	455
76	Gracefully ageing at 50, X-chromosome inactivation becomes a paradigm for RNA and chromatin control. Nature Reviews Molecular Cell Biology, 2011, 12, 815-826.	16.1	187
77	A Boundary Element Between <i>Tsix</i> and <i>Xist</i> Binds the Chromatin Insulator Ctcf and Contributes to Initiation of X-Chromosome Inactivation. Genetics, 2011, 189, 441-454.	1.2	41
78	The X as Model for RNA's Niche in Epigenomic Regulation. Cold Spring Harbor Perspectives in Biology, 2010, 2, a003749-a003749.	2.3	75
79	Genome-wide Identification of Polycomb-Associated RNAs by RIP-seq. Molecular Cell, 2010, 40, 939-953.	4.5	914
80	The Long Noncoding RNA, Jpx, Is a Molecular Switch for X Chromosome Inactivation. Cell, 2010, 143, 390-403.	13.5	448
81	Telomeric RNAs Mark Sex Chromosomes in Stem Cells. Genetics, 2009, 182, 685-698.	1.2	45
82	The pluripotency factor Oct4 interacts with Ctcf and also controls X-chromosome pairing and counting. Nature, 2009, 460, 128-132.	13.7	258
83	Lessons from X-chromosome inactivation: long ncRNA as guides and tethers to the epigenome. Genes and Development, 2009, 23, 1831-1842.	2.7	312
84	Intersection of the RNA Interference and X-Inactivation Pathways. Science, 2008, 320, 1336-1341.	6.0	263
85	Polycomb Proteins Targeted by a Short Repeat RNA to the Mouse X Chromosome. Science, 2008, 322, 750-756.	6.0	1,477
86	Xâ€chromosome inactivation: Sex, heterochromatin, pairing, and noncoding RNA. FASEB Journal, 2008, 22, 396.2.	0.2	0
87	Perinucleolar Targeting of the Inactive X during S Phase: Evidence for a Role in the Maintenance of Silencing. Cell, 2007, 129, 693-706.	13.5	302
88	The DXPas34 Repeat Regulates Random and Imprinted X Inactivation. Developmental Cell, 2007, 12, 57-71.	3.1	81
89	Evidence that homologous X-chromosome pairing requires transcription and Ctcf protein. Nature Genetics, 2007, 39, 1390-1396.	9.4	175
90	A Transient Heterochromatic State in Xist Preempts X Inactivation Choice without RNA Stabilization. Molecular Cell, 2006, 21, 617-628.	4.5	281

#	ARTICLE	IF	CITATIONS
91	Transient Homologous Chromosome Pairing Marks the Onset of X Inactivation. Science, 2006, 311, 1149-1152.	6.0	361
92	Sex Chromosome Inactivation: The Importance of Pairing. Current Biology, 2005, 15, R249-R252.	1.8	21
93	Regulation of X-Chromosome Counting by Tsix and Xite Sequences. Science, 2005, 309, 768-771.	6.0	137
94	Tsix Transcription- versus RNA-Based Mechanisms in Xist Repression and Epigenetic Choice. Current Biology, 2004, 14, 1747-1754.	1.8	82
95	Molecular Links between X-Inactivation and Autosomal Imprinting: X-Inactivation as a Driving Force for the Evolution of Imprinting?. Current Biology, 2003, 13, R242-R254.	1.8	108
96	Reply to "Is Tsix repression of Xist specific to mouse?". Nature Genetics, 2003, 33, 337-338.	9.4	13
97	Functional intergenic transcription: a case study of the X–inactivation centre. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1417-1423.	1.8	8
98	Characterization and quantitation of differential Tsix transcripts: implications for Tsix function. Human Molecular Genetics, 2003, 12, 125-136.	1.4	81
99	2 Is X-chromosome inactivation a homology effect?. Advances in Genetics, 2002, 46, 25-48.	0.8	5
100	CTCF, a Candidate Trans-Acting Factor for X-Inactivation Choice. Science, 2002, 295, 345-347.	6.0	258
101	Homozygous Tsix mutant mice reveal a sex-ratio distortion and revert to random X-inactivation. Nature Genetics, 2002, 32, 195-200.	9.4	79
102	Tsix, a gene antisense to Xist at the X-inactivation centre. Nature Genetics, 1999, 21, 400-404.	9.4	741
103	Targeted Mutagenesis of Tsix Leads to Nonrandom X Inactivation. Cell, 1999, 99, 47-57.	13.5	484