Stanislav A Rybtsov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1334363/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Embryonic origin of the adult hematopoietic system: advances and questions. Development (Cambridge), 2011, 138, 1017-1031.	2.5	327
2	Hierarchical organization and early hematopoietic specification of the developing HSC lineage in the AGM region. Journal of Experimental Medicine, 2011, 208, 1305-1315.	8.5	223
3	Highly potent human hematopoietic stem cells first emerge in the intraembryonic aorta-gonad-mesonephros region. Journal of Experimental Medicine, 2011, 208, 2417-2427.	8.5	204
4	Human haematopoietic stem cell development: from the embryo to the dish. Development (Cambridge), 2017, 144, 2323-2337.	2.5	195
5	Tracing the Origin of the HSC Hierarchy Reveals an SCF-Dependent, IL-3-Independent CD43â^' Embryonic Precursor. Stem Cell Reports, 2014, 3, 489-501.	4.8	122
6	Concealed expansion of immature precursors underpins acute burst of adult HSC activity in foetal liver. Development (Cambridge), 2016, 143, 1284-1289.	2.5	102
7	Dissecting the role of lymphotoxin in lymphoid organs by conditional targeting. Immunological Reviews, 2003, 195, 106-116.	6.0	95
8	Mouse extraembryonic arterial vessels harbor precursors capable of maturing into definitive HSCs. Blood, 2013, 122, 2338-2345.	1.4	84
9	ldentification of the Niche and Phenotype of the First Human Hematopoietic Stem Cells. Stem Cell Reports, 2014, 2, 449-456.	4.8	79
10	Inductive interactions mediated by interplay of asymmetric signalling underlie development of adult haematopoietic stem cells. Nature Communications, 2016, 7, 10784.	12.8	70
11	Understanding Hematopoietic Stem Cell Development through Functional Correlation of Their Proliferative Status with the Intra-aortic Cluster Architecture. Stem Cell Reports, 2017, 8, 1549-1562.	4.8	52
12	Multi-layered Spatial Transcriptomics Identify Secretory Factors Promoting Human Hematopoietic Stem Cell Development. Cell Stem Cell, 2020, 27, 822-839.e8.	11.1	51
13	A molecular roadmap of the AGM region reveals BMPER as a novel regulator of HSC maturation. Journal of Experimental Medicine, 2017, 214, 3731-3751.	8.5	50
14	Developing HSCs become Notch independent by the end of maturation in the AGM region. Blood, 2016, 128, 1567-1577.	1.4	46
15	SMUCKLER/TIM4 is a distinct member of TIM family expressed by stromal cells of secondary lymphoid tissues and associated with lymphotoxin signaling. European Journal of Immunology, 2004, 34, 494-503.	2.9	43
16	Molecular Mechanisms Governing the Stem Cell's Fate in Brain Cancer: Factors of Stemness and Quiescence. Frontiers in Cellular Neuroscience, 2018, 12, 388.	3.7	41
17	Runx1 is required for progression of CD41+ embryonic precursors into HSCs but not prior to this. Development (Cambridge), 2014, 141, 3319-3323.	2.5	36
18	Can Blood-Circulating Factors Unveil and Delay Your Biological Aging?. Biomedicines, 2020, 8, 615.	3.2	17

#	Article	IF	CITATIONS
19	Comparative Dynamics of Individual Ageing among the Investigative Type of Professionals Living in Russia and Russian Migrants to the EU Countries. European Journal of Investigation in Health, Psychology and Education, 2020, 10, 749-762.	1.9	16
20	Towards an advanced cell-based in vitro glioma model system. AIMS Genetics, 2018, 05, 091-112.	1.9	14
21	Acceleration of Biological Aging and Underestimation of Subjective Age Are Risk Factors for Severe COVID-19. Biomedicines, 2021, 9, 913.	3.2	13
22	Analysis of Runx1 Using Induced Gene Ablation Reveals Its Essential Role in Pre-liver HSC Development and Limitations of an InÂVivo Approach. Stem Cell Reports, 2018, 11, 784-794.	4.8	12
23	Analysis of the Spatiotemporal Development of Hematopoietic Stem and Progenitor Cells in the Early Human Embryo. Stem Cell Reports, 2019, 12, 1056-1068.	4.8	12
24	Development of Hematopoietic Stem Cells in the Early Mammalian Embryo. Biochemistry (Moscow), 2019, 84, 190-204.	1.5	11
25	Individually-personal factors of pension stress in representatives of the intellectual type of professions. Sovremennaâ Zarubežnaâ Psihologiâ, 2020, 9, 8-21.	0.7	10
26	Vast Self-Renewal Potential of Human AGM Region HSCs Dramatically Declines in the Umbilical Cord Blood. Stem Cell Reports, 2020, 15, 811-816.	4.8	9
27	Modulation of APLNR Signaling Is Required during the Development and Maintenance of the Hematopoietic System. Stem Cell Reports, 2021, 16, 727-740.	4.8	7
28	Postmenstrual gestational age should be used with care in studies of early human hematopoietic development. Blood, 2013, 121, 3051-3052.	1.4	6
29	The influence of quarantine on the indicators of biopsychological age in Russia (longitudinal study). Sovremennaâ Zarubežnaâ Psihologiâ, 2021, 10, 57-69.	0.7	6
30	Religiosity, Spirituality and Biopsychological Age of Professionals in Russia. European Journal of Investigation in Health, Psychology and Education, 2021, 11, 1221-1238.	1.9	6
31	Directed Differentiation of Embryonic Stem Cells Using a Bead-Based Combinatorial Screening Method. PLoS ONE, 2014, 9, e104301.	2.5	4
32	CD43 but Not CD41 Marks the First Hematopoietic Stem Cells in the Human Embryo. Blood, 2014, 124, 4330-4330.	1.4	3
33	Highly potent human haemopoietic stem cells first emerge in the intraembryonic aorta-gonad-mesonephros region. Lancet, The, 2013, 381, S12.	13.7	2
34	The Biopsychological Indicators of Age Significantly Influence the Severity of COVID-19. , 2021, 7, .		1
35	Analysis of notch signalling activity during hematopoietic stem cell development. Experimental Hematology, 2015, 43, S65.	0.4	0
36	Investigating haematopoiesis in the human embryo using an ex vivo culture system. Experimental Hematology, 2016, 44, S68.	0.4	0

Stanislav A Rybtsov

#	Article	IF	CITATIONS
37	Cellular hierarchy and molecular mechanisms underlying haematopoietic stem cell development. Experimental Hematology, 2017, 53, S25.	0.4	0
38	Declined presentation understanding haematopoietic stem cell development through functional correlation of their proliferative status with the intra-aortic cluster architecture. Experimental Hematology, 2017, 53, S126.	0.4	0
39	Vascular and bone marrow explant models to assess in vitro hematotoxicity of herbal extracts. , 2020, , 487-495.		0
40	Accelerated aging and psychological age of an individual as risk factors for COVID-19 complications. Science and Innovations in Medicine, 2021, 6, 29-32.	0.1	0
41	Highly potent human hematopoietic stem cells first emerge in the intraembryonic aorta-gonad-mesonephros region. Journal of Cell Biology, 2011, 195, i5-i5.	5.2	0
42	3128 – THE RETIREMENT STRESS INCREASES BIOLOGICAL AGE: SEARCHING STRESS-INDUCED INFLAMMATORY AND IMMUNOSENESCENCE FACTORS OF BIOLOGICAL AGING ACCELERATION Experimental Hematology, 2020, 88, S78.	0.4	0
43	Prospects for assessing the biological and immunological age of a person by blood factors. Science and Innovations in Medicine, 2021, 6, 19-39.	0.1	0