
Pingze Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/133382/publications.pdf Version: 2024-02-01

DINCZE ZHANC

#	Article	IF	CITATIONS
1	Influence of the different surface treatments on fracture property of CFRP adhesive joint. Journal of Adhesion Science and Technology, 2023, 37, 961-975.	2.6	3
2	Review on the fatigue properties of 3D woven fiber/epoxy composites: testing and modelling strategies. Journal of Industrial Textiles, 2022, 51, 7755S-7795S.	2.4	3
3	Influence of fabric structure on the tensile and flexural properties of three-dimensional angle-interlock woven composites. Journal of Industrial Textiles, 2022, 51, 1641-1657.	2.4	6
4	Comparative studies on the effect of fabric structure on mechanical properties of carbon fiber/epoxy composites. Journal of Industrial Textiles, 2022, 51, 1348S-1371S.	2.4	3
5	Influence of different micro-pattern types on interface characteristic and mechanical property of CFRTP/aluminum alloy laser bonding joint. International Journal of Advanced Manufacturing Technology, 2022, 120, 3543-3557.	3.0	12
6	The Influence of Loading Rate and Hold Time on the Nano-mechanical Properties of γ-TiAl and Plasma Mo-Si-Ti Coating. Journal of Materials Engineering and Performance, 2022, 31, 7368-7381.	2.5	1
7	Microstructure, nano-mechanical characterization, and fretting wear behavior of plasma surface Cr-Nb alloying on Î ³ -TiAl. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 235, 1012-1024.	1.8	2
8	Tribocorrosion behavior of Nb coating deposited by double-glow plasma alloying. Materials Research Express, 2021, 8, 016411.	1.6	5
9	Oxidation Mechanism of YSZ/NiCr Coating Prepared by Hollow Cathode Glow Discharge Phenomenon and Multi-arc Ion Plating. Journal of Materials Engineering and Performance, 2021, 30, 2832-2842.	2.5	0
10	Numerical simulation of the solidification process of Cu-0.45% Sn alloy in upward continuous casting. Materials Research Express, 2021, 8, 096532.	1.6	1
11	Characterisation and oxidation behaviour of plasma surface alloyed on γ-TiAl alloy. Materials at High Temperatures, 2021, 38, 83-94.	1.0	1
12	Effect of Cr ion implantation on surface morphology, lattice deformation, nanomechanical and fatigue behavior of TC18 alloy. Applied Surface Science, 2020, 506, 145023.	6.1	9
13	Effects of metal–ceramic anticorrosion coating on the performance of ballastless tracks at high temperature. Archives of Civil and Mechanical Engineering, 2020, 20, 1.	3.8	15
14	Comparative study on the morphology and mechanical strength of induction welding joint of polyetheretherketone under different currents. Polymer Engineering and Science, 2020, 60, 2908-2917.	3.1	8
15	Fatigue Behavior of 300ÂM Steel Coated with Water-Based Aluminum Phosphate Coating. Journal of Materials Engineering and Performance, 2020, 29, 6661-6669.	2.5	0
16	Hot Deformation Behavior of Cu–Sn–La Polycrystalline Alloy Prepared by Upcasting. Materials, 2020, 13, 3739.	2.9	3
17	Corrosion and Tribocorrosion Behaviors for TA3 in Ringer's Solution after Implantation of Nb Ions. Applied Sciences (Switzerland), 2020, 10, 8329.	2.5	8
18	A combined experimental and first-principle study on the effect of plasma surface Ta–W co-alloying on the oxidation behavior of γ-TiAl at 900 °C. Journal of Materials Research, 2020, 35, 516-526.	2.6	5

PINGZE ZHANG

#	Article	IF	CITATIONS
19	INNOVATIVE METHOD FOR PREPARATION OF Fe–Al–Cr INTERMETALLIC FUNCTIONALLY GRADED MATERIAL ON 1045 STEEL WITH UNIQUE TRIBOLOGICAL PROPERTIES. Surface Review and Letters, 2019, 26, 1850221.	1.1	2
20	Laser Cladding Fe-Al-Cr Coating with Enhanced Mechanical Properties. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 1197-1204.	1.0	9
21	Structures and properties of Ti-5Al-5Mo-5V-1Cr-1Fe after Nb implantation. Surface and Coatings Technology, 2019, 358, 676-687.	4.8	1
22	Microstructure and corrosion behavior of arc sprayed Zn-xAl (x = 15, 30, 50) alloy coatings in NaCl solution. Materials Research Express, 2019, 6, 1065f7.	1.6	6
23	High-Temperature Oxidation of Double-Glow Plasma Tantalum Alloying on γ-TiAl. Oxidation of Metals, 2019, 92, 337-351.	2.1	4
24	Morphological Evolution of S-Phase in 2024 Aluminum under Tensile Creep at 448-463ÂK. Journal of Materials Engineering and Performance, 2019, 28, 3614-3621.	2.5	2
25	A New Plasma Surface Alloying to Improve the Wear Resistance of the Metallic Card Clothing. Applied Sciences (Switzerland), 2019, 9, 1849.	2.5	2
26	Information description and integration of spiral bevel gear manufacturing process under networked manufacturing mode. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41, 1.	1.6	3
27	Characterisation and corrosion behaviour of WAP coating on 300M steel. Surface Engineering, 2019, 35, 986-996.	2.2	6
28	Investigation of the classification and properties of three-dimensional textile fabrics. Journal of Engineered Fibers and Fabrics, 2019, 14, 155892501988996.	1.0	6
29	Effects of Zr ion implantation on crystal structure and nanoindentation behavior of TC18 titanium alloy. Materials Research Express, 2019, 6, 026560.	1.6	4
30	Corrosion behavior of hotâ€dip Al–Zn coating doped with Si, RE, and Mg during exposure to sodium chloride containing environments. Materials and Corrosion - Werkstoffe Und Korrosion, 2018, 69, 714-724.	1.5	11
31	Preparation and characterization of Cr/CrC multilayer on γ-TiAl alloy by the double glow plasma surface alloying technology. Materials Letters, 2018, 215, 292-295.	2.6	34
32	Effect of MEVVA ion implantation on fatigue properties of TC18 titanium alloy. Surface and Coatings Technology, 2018, 344, 572-578.	4.8	13
33	Microstructural characterization and tribological behavior of surface plasma Zr-Er alloying on TC11 alloy. Materials Research Express, 2018, 5, 026519.	1.6	2
34	Isothermal Oxidation Behavior of Zr-Y Coating on γ-TiAl by Double Glow Plasma Surface Metal Alloying Technique. Coatings, 2018, 8, 361.	2.6	3
35	Sliding wear behaviour of Ni-Cr alloying on Ti6Al4V based on double-glow plasma surface metallurgy technology. Materials Research Express, 2018, 5, 086403.	1.6	2
36	Corrosion behavior of Al2O3-WER and WC-Co-WER coatings on TC18 in neutral salt spray environment. Materials Research Express, 2018, 5, 066411.	1.6	2

PINGZE ZHANG

#	Article	IF	CITATIONS
37	Al2O3 nanoparticles reinforced Fe-Al laser cladding coatings with enhanced mechanical properties. Journal of Alloys and Compounds, 2018, 755, 41-54.	5.5	43
38	Double glow plasma surface Cr-Ni alloying of Ti6Al4V alloys: Mechanical properties and impact of preparing process on the substrate. Vacuum, 2018, 155, 233-241.	3.5	23
39	Tribological behaviour of double-glow plasma zirconium-yttrium alloying on Î ³ -TiAl. Surface Engineering, 2017, 33, 911-918.	2.2	6
40	Fretting wear behaviour of double-glow plasma Cr–Nb coating on γ-TiAl alloy. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2017, 231, 1184-1191.	1.8	0
41	TRIBOLOGICAL BEHAVIOR OF Al–Cr COATING OBTAINED BY DGPSM AND IIP COMPOSITE TECHNOLOGY. Surface Review and Letters, 2017, 24, 1750091.	1.1	5
42	Tribological Behavior of Aluminum Slurry Coating on 300M Steel. Journal of Materials Engineering and Performance, 2017, 26, 3719-3727.	2.5	5
43	Mechanical and tribological properties of Cr–NbÂdouble-glow plasma coatings deposited on Ti–AlÂ alloy. Tribology - Materials, Surfaces and Interfaces, 2017, 11, 98-106.	1.4	3
44	Oxidation Behavior of TiAl-Based Alloy Modified by Double-Glow Plasma Surface Alloying with Cr–Mo. High Temperature Materials and Processes, 2017, 36, 669-675.	1.4	6
45	Niobium coated Ti-Al alloy: improvement of tribological behaviour, oxidation resistance and flame retardancy. International Journal of Surface Science and Engineering, 2016, 10, 559.	0.4	5
46	Study on preparation, microstructure and luminescent properties of Er-ZrO2 layer. Journal of Rare Earths, 2016, 34, 958-962.	4.8	9
47	Tribological Properties of the Fe-Al-Cr Alloyed Layer by Double Glow Plasma Surface Metallurgy. Journal of Materials Engineering and Performance, 2016, 25, 3938-3947.	2.5	8
48	Tribological behavior of CrCoNiAlTiY coating synthesized by double-glow plasma surface alloying technique. Tribology International, 2015, 92, 512-518.	5.9	30
49	Double glow plasma chromizing of Ti6Al4V alloys: Impact of working time, substrate–target distance, argon pressure and surface temperature of substrate. Vacuum, 2015, 121, 81-87.	3.5	20
50	Tribological Properties of Double-Glow Plasma Surface Niobizing on Low-Carbon Steel. Tribology Transactions, 2014, 57, 786-792.	2.0	7
51	Characteristics of Mo–Cr duplex-alloyed layer on Ti6Al4V by double glow plasma surface metallurgy. Surface and Coatings Technology, 2013, 228, S206-S209.	4.8	11
52	FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr-W ALLOYING LAYER OFγ-TiAl ALLOY. Jinshu Xuebao/Acta Metallurgica Sinica, 2013, 49, 1406.	0.3	0
53	Improving corrosion resistance of Q235 steel by Ni-Cr alloyed layer. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 33-37.	1.0	2
54	Effect of different alloyed layers on the high temperature oxidation behavior of newly developed Ti2AlNb-based alloys. Applied Surface Science, 2011, 257, 1835-1839.	6.1	40

PINGZE ZHANG

#	Article	IF	CITATIONS
55	Ir coating prepared on Mo substrate by double glow plasma. Journal of Coatings Technology Research, 2009, 6, 517-522.	2.5	22
56	Effect of counterface materials on friction and wear behavior of double glow glasma discharge surface alloying on Ti22Al25Nb alloy. Journal Wuhan University of Technology, Materials Science Edition, 2009, 24, 106-110.	1.0	4
57	Simulation of thermal stresses in SiC–Al2O3 composite tritium penetration barrier by finite-element analysis. Materials & Design, 2009, 30, 2785-2790.	5.1	38
58	The role of process parameters in plasma surface chromising of Ti2AlNb-based alloys. Applied Surface Science, 2009, 256, 1333-1340.	6.1	27
59	The Friction and Wear Properties of Ti–Al–Nb Intermetallics by Plasma Surface Alloying. Tribology Letters, 2008, 30, 61-67.	2.6	19
60	Modeling of Residual Stresses in Functionally Gradient Al ₂ O ₃ Coating on 316L Substrate. Journal of Computational and Theoretical Nanoscience, 2008, 5, 1677-1680.	0.4	5
61	Surface plasma chromized burn-resistant titanium alloy. Surface and Coatings Technology, 2007, 201, 4884-4887.	4.8	25
62	Study on double-glow plasma niobium surface alloying of pure titanium. Vacuum, 2007, 81, 937-942.	3.5	14