

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1332930/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Migrasome biogenesis and functions. FEBS Journal, 2022, 289, 7246-7254.	4.7	37
2	Tetraspanin-enriched microdomains: The building blocks of migrasomes. , 2022, 1, 100003.		7
3	EGFR signaling promotes nuclear translocation of plasma membrane protein TSPAN8 to enhance tumor progression via STAT3-mediated transcription. Cell Research, 2022, 32, 359-374.	12.0	20
4	Myosin 1D and the branched actin network control the condensation of p62 bodies. Cell Research, 2022, 32, 659-669.	12.0	12
5	Retractosomes: small extracellular vesicles generated from broken-off retraction fibers. Cell Research, 2022, 32, 953-956.	12.0	11
6	Extracellular vesicles: from bench to bedside. , 2022, 1, .		3
7	Assembly of Tetraspanin-enriched macrodomains contains membrane damage to facilitate repair. Nature Cell Biology, 2022, 24, 825-832.	10.3	9
8	GLIPR2 is a negative regulator of autophagy and the BECN1-ATG14-containing phosphatidylinositol 3-kinase complex. Autophagy, 2021, 17, 2891-2904.	9.1	22
9	Lateral transfer of mRNA and protein by migrasomes modifies the recipient cells. Cell Research, 2021, 31, 237-240.	12.0	45
10	COPII mitigates ER stress by promoting formation of ER whorls. Cell Research, 2021, 31, 141-156.	12.0	36
11	Migrasomes: the knowns, the known unknowns and the unknown unknowns: a personal perspective. Science China Life Sciences, 2021, 64, 162-166.	4.9	11
12	Sorting nexin 5 mediates virus-induced autophagy and immunity. Nature, 2021, 589, 456-461.	27.8	61
13	Real-Time Study of Protein Phase Separation with Spatiotemporal Analysis of Single-Nanoparticle Trajectories. ACS Nano, 2021, 15, 539-549.	14.6	18
14	THOC4 regulates energy homeostasis by stabilizing <i>TFEB</i> mRNA during prolonged starvation. Journal of Cell Science, 2021, 134, .	2.0	0
15	Mitocytosis, a migrasome-mediated mitochondrial quality-control process. Cell, 2021, 184, 2896-2910.e13.	28.9	188
16	Iterative tomography with digital adaptive optics permits hour-long intravital observation of 3D subcellular dynamics at millisecond scale. Cell, 2021, 184, 3318-3332.e17.	28.9	115
17	Nuclear translocation of the 4-pass transmembrane protein Tspan8. Cell Research, 2021, 31, 1218-1221.	12.0	12
18	Phase Separation in Regulation of Aggrephagy. Journal of Molecular Biology, 2020, 432, 160-169.	4.2	37

#	Article	IF	CITATIONS
19	ER-mitochondria contacts promote mtDNA nucleoids active transportation via mitochondrial dynamic tubulation. Nature Communications, 2020, 11, 4471.	12.8	58
20	Chemical screening identifies ROCK1 as a regulator of migrasome formation. Cell Discovery, 2020, 6, 51.	6.7	14
21	A special review collection on autophagy. Cell Research, 2020, 30, 553-553.	12.0	11
22	Multi-site-mediated entwining of the linear WIR-motif around WIPI β-propellers for autophagy. Nature Communications, 2020, 11, 2702.	12.8	34
23	The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles. Nature Cell Biology, 2020, 22, 187-199.	10.3	300
24	WHAMM initiates autolysosome tubulation by promoting actin polymerization on autolysosomes. Nature Communications, 2019, 10, 3699.	12.8	40
25	Migrasomes provide regional cues for organ morphogenesis during zebrafish gastrulation. Nature Cell Biology, 2019, 21, 966-977.	10.3	122
26	Migrasome formation is mediated by assembly of micron-scale tetraspanin macrodomains. Nature Cell Biology, 2019, 21, 991-1002.	10.3	121
27	SIP/CacyBP promotes autophagy by regulating levels of BRUCE/Apollon, which stimulates LC3-I degradation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13404-13413.	7.1	40
28	Autophagy, Inflammation, and Metabolism (AIM) Center in its second year. Autophagy, 2019, 15, 1829-1833.	9.1	0
29	Identification of markers for migrasome detection. Cell Discovery, 2019, 5, 27.	6.7	54
30	Transient Receptor Potential V Channels Are Essential for Glucose Sensing by Aldolase and AMPK. Cell Metabolism, 2019, 30, 508-524.e12.	16.2	86
31	p53 regulation of ammonia metabolism through urea cycle controls polyamine biosynthesis. Nature, 2019, 567, 253-256.	27.8	110
32	WGA is a probe for migrasomes. Cell Discovery, 2019, 5, 13.	6.7	27
33	Allosteric enhancement of ORP1-mediated cholesterol transport by PI(4,5)P2/PI(3,4)P2. Nature Communications, 2019, 10, 829.	12.8	73
34	Studying Autophagic Lysosome Reformation in Cells and by an In Vitro Reconstitution System. Methods in Molecular Biology, 2019, 1880, 163-172.	0.9	5
35	Polyubiquitin chain-induced p62 phase separation drives autophagic cargo segregation. Cell Research, 2018, 28, 405-415.	12.0	325
36	Visualizing Autophagic Lysosome Reformation in Cells Using In Vitro Reconstitution Systems. Current Protocols in Cell Biology, 2018, 78, 11.24.1-11.24.15.	2.3	10

#	Article	IF	CITATIONS
37	Detection of Migrasomes. Methods in Molecular Biology, 2018, 1749, 43-49.	0.9	14
38	Autophagy pathway: Cellular and molecular mechanisms. Autophagy, 2018, 14, 207-215.	9.1	984
39	Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence: supporting the next generation of autophagy researchers and fostering international collaborations. Autophagy, 2018, 14, 925-929.	9.1	3
40	Gene-specific mechanisms direct glucocorticoid-receptor-driven repression of inflammatory response genes in macrophages. ELife, 2018, 7, .	6.0	77
41	Cholesterol Crystal-Mediated Inflammation Is Driven by Plasma Membrane Destabilization. Frontiers in Immunology, 2018, 9, 1163.	4.8	23
42	Development of Research into Autophagic Lysosome Reformation. Molecules and Cells, 2018, 41, 45-49.	2.6	35
43	Formation of a Snf1-Mec1-Atg1 Module on Mitochondria Governs Energy Deprivation-Induced Autophagy by Regulating Mitochondrial Respiration. Developmental Cell, 2017, 41, 59-71.e4.	7.0	65
44	Recent progress in autophagic lysosome reformation. Traffic, 2017, 18, 358-361.	2.7	93
45	A semisynthetic Atg3 reveals that acetylation promotes Atg3 membrane binding and Atg8 lipidation. Nature Communications, 2017, 8, 14846.	12.8	43
46	Mitochondria: The hub of energy deprivation-induced autophagy. Autophagy, 2017, 14, 1-2.	9.1	9
47	Architecture of the ATG2B-WDR45 complex and an aromatic Y/HF motif crucial for complex formation. Autophagy, 2017, 13, 1870-1883.	9.1	90
48	Pairing of integrins with ECM proteins determines migrasome formation. Cell Research, 2017, 27, 1397-1400.	12.0	83
49	Cryo-EM structure and biochemical analysis reveal the basis of the functional difference between human PI3KC3-C1 and -C2. Cell Research, 2017, 27, 989-1001.	12.0	44
50	Vesicle Size Regulates Nanotube Formation in the Cell. Scientific Reports, 2016, 6, 24002.	3.3	27
51	Kinesin 1 Drives Autolysosome Tubulation. Developmental Cell, 2016, 37, 326-336.	7.0	129
52	SLC35D3 increases autophagic activity in midbrain dopaminergic neurons by enhancing BECN1-ATG14-PIK3C3 complex formation. Autophagy, 2016, 12, 1168-1179.	9.1	16
53	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
54	Scissors for autolysosome tubules. EMBO Journal, 2015, 34, 2217-2218.	7.8	6

#	Article	IF	CITATIONS
55	A Novel Size-Based Sorting Mechanism of Pinocytic Luminal Cargoes in Microglia. Journal of Neuroscience, 2015, 35, 2674-2688.	3.6	16
56	CapZ regulates autophagosomal membrane shaping by promoting actin assembly inside the isolationAmembrane. Nature Cell Biology, 2015, 17, 1112-1123.	10.3	115
57	Phosphorylation of Atg31 is required for autophagy. Protein and Cell, 2015, 6, 288-296.	11.0	13
58	Analysis of phosphorylation sites on autophagy proteins. Protein and Cell, 2015, 6, 698-701.	11.0	5
59	Dynamic tubulation of mitochondria drives mitochondrial network formation. Cell Research, 2015, 25, 1108-1120.	12.0	101
60	The Ccl1-Kin28 kinase complex regulates autophagy under nitrogen starvation. Journal of Cell Science, 2015, 129, 135-44.	2.0	12
61	Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration. Cell Research, 2015, 25, 24-38.	12.0	307
62	Dapper1 promotes autophagy by enhancing the Beclin1-Vps34-Atg14L complex formation. Cell Research, 2014, 24, 912-924.	12.0	57
63	Recent progress in autophagy. Cell Research, 2014, 24, 1-2.	12.0	12
64	Atg5 regulates late endosome and lysosome biogenesis. Science China Life Sciences, 2014, 57, 59-68.	4.9	24
65	Structural basis for interaction of a cotranslational chaperone with the eukaryotic ribosome. Nature Structural and Molecular Biology, 2014, 21, 1042-1046.	8.2	61
66	Rab8a-AS160-MSS4 Regulatory Circuit Controls Lipid Droplet Fusion and Growth. Developmental Cell, 2014, 30, 378-393.	7.0	98
67	The general amino acid control pathway regulates mTOR and autophagy during serum/glutamine starvation. Journal of Cell Biology, 2014, 206, 173-182.	5.2	163
68	Autophagic lysosome reformation. Experimental Cell Research, 2013, 319, 142-146.	2.6	103
69	Function and Molecular Mechanism of Acetylation in Autophagy Regulation. Science, 2012, 336, 474-477.	12.6	220
70	Clathrin and phosphatidylinositol-4,5-bisphosphate regulate autophagic lysosome reformation. Nature Cell Biology, 2012, 14, 924-934.	10.3	260
71	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
72	How does acetylation regulate autophagy?. Autophagy, 2012, 8, 1529-1530.	9.1	21

#	Article	IF	CITATIONS
73	The WD40 Repeat PtdIns(3)P-Binding Protein EPG-6 Regulates Progression of Omegasomes to Autophagosomes. Developmental Cell, 2011, 21, 343-357.	7.0	200
74	Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7826-7831.	7.1	249
75	The late stage of autophagy: cellular events and molecular regulation. Protein and Cell, 2010, 1, 907-915.	11.0	41
76	Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature, 2010, 465, 942-946.	27.8	1,303
77	Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nature Cell Biology, 2010, 12, 665-675.	10.3	518
78	C. elegans Screen Identifies Autophagy Genes Specific to Multicellular Organisms. Cell, 2010, 141, 1042-1055.	28.9	369
79	The selectivity of autophagy and its role in cell death and survival. Autophagy, 2008, 4, 567-573.	9.1	126
80	Autophagic programmed cell death by selective catalase degradation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4952-4957.	7.1	619
81	Regulation of an ATG7-beclin 1 Program of Autophagic Cell Death by Caspase-8. Science, 2004, 304, 1500-1502.	12.6	1,197
82	Autophagy and caspases: a new cell death program. Cell Cycle, 2004, 3, 1124-6.	2.6	63
83	IMMUNOLOGY: The Paracaspase Connection. Science, 2003, 302, 1515-1516.	12.6	5
84	Assembly of Double-Shelled, Virus-Like Particles in Transgenic Rice Plants Expressing Two Major Structural Proteins of Rice Dwarf Virus. Journal of Virology, 2000, 74, 9808-9810.	3.4	32
85	Vitamin B1 THIAMIN REQUIRING1 synthase mediates the maintenance of chloroplast function by regulating sugar and fatty acid metabolism in rice. Journal of Integrative Plant Biology, 0,	8.5	2