
Bomin Mao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1331667/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	State-of-the-Art Deep Learning: Evolving Machine Intelligence Toward Tomorrow's Intelligent Network Traffic Control Systems. IEEE Communications Surveys and Tutorials, 2017, 19, 2432-2455.	39.4	611
2	The Deep Learning Vision for Heterogeneous Network Traffic Control: Proposal, Challenges, and Future Perspective. IEEE Wireless Communications, 2017, 24, 146-153.	9.0	343
3	Routing or Computing? The Paradigm Shift Towards Intelligent Computer Network Packet Transmission Based on Deep Learning. IEEE Transactions on Computers, 2017, 66, 1946-1960.	3.4	275
4	Optimizing Space-Air-Ground Integrated Networks by Artificial Intelligence. IEEE Wireless Communications, 2019, 26, 140-147.	9.0	272
5	Ten Challenges in Advancing Machine Learning Technologies toward 6G. IEEE Wireless Communications, 2020, 27, 96-103.	9.0	248
6	An Intelligent Traffic Load Prediction-Based Adaptive Channel Assignment Algorithm in SDN-IoT: A Deep Learning Approach. IEEE Internet of Things Journal, 2018, 5, 5141-5154.	8.7	198
7	On Removing Routing Protocol from Future Wireless Networks: A Real-time Deep Learning Approach for Intelligent Traffic Control. IEEE Wireless Communications, 2018, 25, 154-160.	9.0	197
8	Al-Based Joint Optimization of QoS and Security for 6G Energy Harvesting Internet of Things. IEEE Internet of Things Journal, 2020, 7, 7032-7042.	8.7	132
9	A Deep-Learning-Based Radio Resource Assignment Technique for 5G Ultra Dense Networks. IEEE Network, 2018, 32, 28-34.	6.9	128
10	AI Models for Green Communications Towards 6G. IEEE Communications Surveys and Tutorials, 2022, 24, 210-247.	39.4	104
11	On a Novel Deep-Learning-Based Intelligent Partially Overlapping Channel Assignment in SDN-IoT. IEEE Communications Magazine, 2018, 56, 80-86.	6.1	97
12	A Novel Non-Supervised Deep-Learning-Based Network Traffic Control Method for Software Defined Wireless Networks. IEEE Wireless Communications, 2018, 25, 74-81.	9.0	96
13	Comprehensive Survey on Machine Learning in Vehicular Network: Technology, Applications and Challenges. IEEE Communications Surveys and Tutorials, 2021, 23, 2027-2057.	39.4	92
14	Survey on Machine Learning for Intelligent End-to-End Communication Toward 6G: From Network Access, Routing to Traffic Control and Streaming Adaption. IEEE Communications Surveys and Tutorials, 2021, 23, 1578-1598.	39.4	86
15	Optimizing Computation Offloading in Satellite-UAV-Served 6G IoT: A Deep Learning Approach. IEEE Network, 2021, 35, 102-108.	6.9	85
16	On A Novel Adaptive UAV-Mounted Cloudlet-Aided Recommendation System for LBSNs. IEEE Transactions on Emerging Topics in Computing, 2019, 7, 565-577.	4.6	75
17	An Intelligent Route Computation Approach Based on Real-Time Deep Learning Strategy for Software Defined Communication Systems. IEEE Transactions on Emerging Topics in Computing, 2021, 9, 1554-1565.	4.6	73
18	On Intelligent Traffic Control for Large-Scale Heterogeneous Networks: A Value Matrix-Based Deep Learning Approach. IEEE Communications Letters, 2018, 22, 2479-2482.	4.1	39

Βομιν Μαο

#	Article	IF	CITATIONS
19	Harvesting and Threat Aware Security Configuration Strategy for IEEE 802.15.4 Based IoT Networks. IEEE Communications Letters, 2019, 23, 2130-2134.	4.1	37
20	A Tensor Based Deep Learning Technique for Intelligent Packet Routing. , 2017, , .		33
21	Intelligent Reflecting Surface-Aided Vehicular Networks Toward 6G: Vision, Proposal, and Future Directions. IEEE Vehicular Technology Magazine, 2021, 16, 48-56.	3.4	33
22	Value Iteration Architecture Based Deep Learning for Intelligent Routing Exploiting Heterogeneous Computing Platforms. IEEE Transactions on Computers, 2019, 68, 939-950.	3.4	29
23	Intelligent Reflecting Surface in 6G Vehicular Communications: A Survey. IEEE Open Journal of Vehicular Technology, 2022, 3, 266-277.	4.9	26
24	ST-DeLTA: A Novel Spatial-Temporal Value Network Aided Deep Learning Based Intelligent Network Traffic Control System. IEEE Transactions on Sustainable Computing, 2020, 5, 568-580.	3.1	20
25	Multilayer Virtual Cell-Based Resource Allocation in Low-Power Wide-Area Networks. IEEE Internet of Things Journal, 2019, 6, 10665-10674.	8.7	9
26	Deep Reinforcement Learning for Securing Software-Defined Industrial Networks With Distributed Control Plane. IEEE Transactions on Industrial Informatics, 2022, 18, 4275-4285.	11.3	6
27	Deep Spatiotemporal Partially Overlapping Channel Allocation: Joint CNN and Activity Vector Approach. , 2018, , .		5
28	On Extracting the Spatial-Temporal Features of Network Traffic Patterns: A Tensor Based Deep Learning Model. , 2018, , .		4
29	Tunable dual-parallel Mach–Zehnder modulator with ultra linearity and high tolerance. Journal of Modern Optics, 2015, 62, 778-785.	1.3	2
30	An Intelligent Packet Forwarding Approach for Disaster Recovery Networks. , 2019, , .		2
31	An Absorbing Markov Chain Based Model to Solve Computation and Communication Tradeoff in GPU-Accelerated MDRUs for Safety Confirmation in Disaster Scenarios. IEEE Transactions on Computers, 2019, 68, 1256-1268.	3.4	1