Francisco José López-Hernández

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1330796/publications.pdf

Version: 2024-02-01

75 papers

3,113 citations

22 h-index

304743

52 g-index

77 all docs

77 docs citations

77 times ranked 4592 citing authors

#	Article	IF	CITATIONS
1	Protective Effect of Quercetin 3-O-Glucuronide against Cisplatin Cytotoxicity in Renal Tubular Cells. Molecules, 2022, 27, 1319.	3.8	7
2	The Urinary Level of Injury Biomarkers Is Not Univocally Reflective of the Extent of Toxic Renal Tubular Injury in Rats. International Journal of Molecular Sciences, 2022, 23, 3494.	4.1	2
3	Neural Network-Based Calculator for Rat Glomerular Filtration Rate. Biomedicines, 2022, 10, 610.	3.2	6
4	Determining risk factors for triple whammy acute kidney injury. Mathematical Biosciences, 2022, 347, 108809.	1.9	7
5	Urinary KIM-1 Correlates with the Subclinical Sequelae of Tubular Damage Persisting after the Apparent Functional Recovery from Intrinsic Acute Kidney Injury. Biomedicines, 2022, 10, 1106.	3.2	4
6	The furosemide stress test and computational modeling identify renal damage sites associated with predisposition to acute kidney injury in rats. Translational Research, 2021, 231, 76-91.	5.0	6
7	A Micellar Formulation of Quercetin Prevents Cisplatin Nephrotoxicity. International Journal of Molecular Sciences, 2021, 22, 729.	4.1	20
8	Regression Modeling of the Antioxidant-to-Nephroprotective Relation Shows the Pivotal Role of Oxidative Stress in Cisplatin Nephrotoxicity. Antioxidants, 2021, 10, 1355.	5.1	8
9	Urinary Plasminogen Activator Inhibitor-1: A Biomarker of Acute Tubular Injury. American Journal of Nephrology, 2021, 52, 714-724.	3.1	2
10	Haemodynamic frailty – A risk factor for acute kidney injury in the elderly. Ageing Research Reviews, 2021, 70, 101408.	10.9	12
11	Biomarkers of persistent renal vulnerability after acute kidney injury recovery. Scientific Reports, 2021, 11, 21183.	3.3	5
12	Are Antioxidants Useful in Preventing the Progression of Chronic Kidney Disease?. Antioxidants, 2021, 10, 1669.	5.1	6
13	The furosemide stress test: Perspectives for acute kidney injury diagnosis. Jornal Brasileiro De Nefrologia: Orgao Oficial De Sociedades Brasileira E Latino-Americana De Nefrologia, 2021, , .	0.9	3
14	Albuminuria Pre-Emptively Identifies Cardiac Patients at Risk of Contrast-Induced Nephropathy. Journal of Clinical Medicine, 2021, 10, 4942.	2.4	6
15	Systematic review and meta-analysis of the efficacy of clinically tested protectants of cisplatin nephrotoxicity. European Journal of Clinical Pharmacology, 2020, 76, 23-33.	1.9	35
16	Urinary transferrin pre-emptively identifies the risk of renal damage posed by subclinical tubular alterations. Biomedicine and Pharmacotherapy, 2020, 121, 109684.	5.6	22
17	Urinary TCP1-eta: A Cortical Damage Marker for the Pathophysiological Diagnosis and Prognosis of Acute Kidney Injury. Toxicological Sciences, 2020, 174, 3-15.	3.1	8
18	Combined use of GM2AP and TCP1-eta urinary levels predicts recovery from intrinsic acute kidney injury. Scientific Reports, 2020, 10, 11599.	3.3	11

#	Article	IF	CITATIONS
19	Association of Alk1 and Endoglin Polymorphisms with Cardiovascular Damage. Scientific Reports, 2020, 10, 9383.	3.3	4
20	A meta-analysis of preclinical studies using antioxidants for the prevention of cisplatin nephrotoxicity: implications for clinical application. Critical Reviews in Toxicology, 2020, 50, 780-800.	3.9	11
21	Pathophysiological mechanisms underlying a rat model of triple whammy acute kidney injury. Laboratory Investigation, 2020, 100, 1455-1464.	3.7	6
22	Metabolic Surgery to Treat Obesity in Diabetic Kidney Disease, Chronic Kidney Disease, and End-Stage Kidney Disease; What Are the Unanswered Questions?. Frontiers in Endocrinology, 2020, 11, 289.	3.5	28
23	Impaired Tubular Reabsorption Is the Main Mechanism Explaining Increases in Urinary NGAL Excretion Following Acute Kidney Injury in Rats. Toxicological Sciences, 2020, 175, 75-86.	3.1	14
24	Quercetin, a Promising Clinical Candidate for The Prevention of Contrast-Induced Nephropathy. International Journal of Molecular Sciences, 2019, 20, 4961.	4.1	15
25	Preventive Effect of Cardiotrophin-1 Administration before DSS-Induced Ulcerative Colitis in Mice. Journal of Clinical Medicine, 2019, 8, 2086.	2.4	6
26	Cardiotrophinâ€1 opposes renal fibrosis in mice: Potential prevention of chronic kidney disease. Acta Physiologica, 2019, 226, e13247.	3.8	11
27	N -acetylcysteine transforms necrosis into apoptosis and affords tailored protection from cisplatin cytotoxicity. Toxicology and Applied Pharmacology, 2018, 349, 83-93.	2.8	23
28	Cardiotrophin-1 attenuates experimental colitis in mice. Clinical Science, 2018, 132, 985-1001.	4.3	5
29	Cardiotrophin-1 Improves Kidney Preservation, Graft Function, and Survival in Transplanted Rats. Transplantation, 2018, 102, e404-e412.	1.0	4
30	Acute tubular necrosis: An old term in search for a new meaning within the evolving concept of acute kidney injury. European Journal of Molecular and Clinical Medicine, 2017, 2, 110.	0.1	1
31	Deferasirox-induced iron depletion promotes BclxL downregulation and death of proximal tubular cells. Scientific Reports, 2017, 7, 41510.	3.3	27
32	Association of VAV2 and VAV3 polymorphisms with cardiovascular risk factors. Scientific Reports, 2017, 7, 41875.	3.3	14
33	A systematic meta-analysis on the efficacy of pre-clinically tested nephroprotectants at preventing aminoglycoside nephrotoxicity. Toxicology, 2017, 377, 14-24.	4.2	17
34	Differential effect of quercetin on cisplatin-induced toxicity in kidney and tumor tissues. Food and Chemical Toxicology, 2017, 107, 226-236.	3.6	63
35	Key role of oxidative stress in animal models of aminoglycoside nephrotoxicity revealed by a systematic analysis of the antioxidant-to-nephroprotective correlation. Toxicology, 2017, 385, 10-17.	4.2	22
36	Cardiotrophin-1 therapy prevents gentamicin-induced nephrotoxicity in rats. Pharmacological Research, 2016, 107, 137-146.	7.1	20

#	Article	IF	CITATIONS
37	Mechanisms of triple whammy acute kidney injury. , 2016, 167, 132-145.		38
38	Identification of bone morphogenetic protein 9 (BMP9) as a novel profibrotic factor in vitro. Cellular Signalling, 2016, 28, 1252-1261.	3.6	21
39	Lamin A is involved in the development of vascular calcification induced by chronic kidney failure and phosphorus load. Bone, 2016, 84, 160-168.	2.9	18
40	Activation of the ALK-5 Pathway is not per se Sufficient for the Antiproliferative Effect of TGF- \hat{l}^21 on Renal Tubule Epithelial Cells. Cellular Physiology and Biochemistry, 2015, 37, 1231-1239.	1.6	4
41	Urinary proteomics in renal pathophysiology: Impact of proteinuria. Proteomics - Clinical Applications, 2015, 9, 636-640.	1.6	3
42	Increased Klk9 Urinary Excretion Is Associated to Hypertension-Induced Cardiovascular Damage and Renal Alterations. Medicine (United States), 2015, 94, e1617.	1.0	4
43	Sub-nephrotoxic cisplatin sensitizes rats to acute renal failure and increases urinary excretion of fumarylacetoacetase. Toxicology Letters, 2015, 234, 99-109.	0.8	18
44	Pathophysiological role of different tubular epithelial cell death modes in acute kidney injury. CKJ: Clinical Kidney Journal, 2015, 8, 548-559.	2.9	84
45	Hypertension and Hyperglycemia Synergize to Cause Incipient Renal Tubular Alterations Resulting in Increased NGAL Urinary Excretion in Rats. PLoS ONE, 2014, 9, e105988.	2.5	8
46	Interferon-γ Reduces the Proliferation of Primed Human Renal Tubular Cells. Nephron Extra, 2014, 4, 1-7.	1.1	8
47	Increased urinary excretion of albumin, hemopexin, transferrin and VDBP correlates with chronic sensitization to gentamicin nephrotoxicity in rats. Toxicology, 2013, 304, 83-91.	4.2	23
48	Cardiotrophin-1 Administration Prevents the Renal Toxicity of Iodinated Contrast Media in Rats. Toxicological Sciences, 2013, 132, 493-501.	3.1	24
49	Subcellular targets of cisplatin cytotoxicity: An integrated view. , 2012, 136, 35-55.		148
50	Role of TGF- \hat{l}^2 in chronic kidney disease: an integration of tubular, glomerular and vascular effects. Cell and Tissue Research, 2012, 347, 141-154.	2.9	250
51	Effects of deferasirox on renal function and renal epithelial cell death. Toxicology Letters, 2011, 203, 154-161.	0.8	31
52	New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney International, 2011, 79, 33-45.	5.2	497
53	An integrative view of the pathophysiological events leading to cisplatin nephrotoxicity. Critical Reviews in Toxicology, $2011, 41, 803-821$.	3.9	199
54	An Integrative Overview on the Mechanisms Underlying the Renal Tubular Cytotoxicity of Gentamicin. Toxicological Sciences, 2011, 119, 245-256.	3.1	205

#	Article	IF	Citations
55	Quercetin reduces cisplatin nephrotoxicity in rats without compromising its anti-tumour activity. Nephrology Dialysis Transplantation, 2011, 26, 3484-3495.	0.7	131
56	Urinary levels of regenerating islet-derived protein III \hat{l}^2 and gelsolin differentiate gentamicin from cisplatin-induced acute kidney injury in rats. Kidney International, 2011, 79, 518-528.	5.2	33
57	Necrotic Concentrations of Cisplatin Activate the Apoptotic Machinery but Inhibit Effector Caspases and Interfere with the Execution of Apoptosis. Toxicological Sciences, 2011, 122, 73-85.	3.1	60
58	Common pathophysiological mechanisms of chronic kidney disease: Therapeutic perspectives. , 2010, 128, 61-81.		128
59	Nephrotoxicity of Uranium: Pathophysiological, Diagnostic and Therapeutic Perspectives. Toxicological Sciences, 2010, 118, 324-347.	3.1	119
60	Sub-nephrotoxic doses of gentamicin predispose animals to developing acute kidney injury and to excrete ganglioside M2 activator protein. Kidney International, 2010, 78, 1006-1015.	5.2	38
61	An integrative view on the role of TGF- \hat{l}^2 in the progressive tubular deletion associated with chronic kidney disease. Kidney International, 2010, 77, 950-955.	5.2	131
62	Potential utility of PPARα activation in the prevention of ischemic and drug-induced acute renal damage. Kidney International, 2009, 76, 1022-1024.	5.2	20
63	Glomerular nephrotoxicity of aminoglycosides. Toxicology and Applied Pharmacology, 2007, 223, 86-98.	2.8	208
64	The extrinsic and intrinsic apoptotic pathways are differentially affected by temperature upstream of mitochondrial damage. Apoptosis: an International Journal on Programmed Cell Death, 2006, 11, 1339-1347.	4.9	15
65	The lord of the ring: Mandatory role of the kidney in drug therapy of hypertension. , 2006, 111, 53-80.		7
66	The Retinoid Antagonist MX781 Induces Clusterin Expression in Prostate Cancer Cells via Heat Shock Factor-1 and Activator Protein-1 Transcription Factors. Cancer Research, 2004, 64, 5905-5912.	0.9	16
67	Reduced concentrations of serum enhance the antiproliferative activity of retinoid-related molecules and accelerate the onset of apoptosis. Biochemical Pharmacology, 2003, 65, 2021-2030.	4.4	6
68	Inhibition of lκB Kinase by a New Class of Retinoid-Related Anticancer Agents That Induce Apoptosis. Molecular and Cellular Biology, 2003, 23, 1061-1074.	2.3	67
69	Z-FA-fmk inhibits effector caspases but not initiator caspases 8 and 10, and demonstrates that novel anticancer retinoid-related molecules induce apoptosis via the intrinsic pathway. Molecular Cancer Therapeutics, 2003, 2, 255-63.	4.1	33
70	Retinoids in combination therapies for the treatment of cancer: mechanisms and perspectives. Drug Resistance Updates, 2002, 5, 162-175.	14.4	41
71	Beneficial Effects of Trandolapril in Uninephrectomized Spontaneously Hypertensive Rats: Role of Cyclooxygenase Pathway. Basic and Clinical Pharmacology and Toxicology, 2002, 91, 90-96.	0.0	1
72	Mesenteric cyclooxygenase products after combined antihypertensive treatment in uninephrectomized SHRs. Cardiovascular Drugs and Therapy, 2000, 14, 41-48.	2.6	1

#	Article	IF	CITATIONS
73	Antihypertensive Effect of Trandolapril and Verapamil in Rats with Induced Hypertension. Journal of Cardiovascular Pharmacology, 1999, 33, 748-755.	1.9	3
74	Antihypertensive Action of Trandolapril and Verapamil in Spontaneously Hypertensive Rats After Unilateral Nephrectomy. Journal of Cardiovascular Pharmacology, 1998, 32, 284-290.	1.9	8
75	Endothelial Activin Receptor-Like Kinase 1 (ALK1) Regulates Myofibroblast Emergence and Peritubular Capillary Stability in the Early Stages of Kidney Fibrosis. Frontiers in Pharmacology, $0,13,.$	3.5	3