
Björn Reineking

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/133041/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessing the performance of objectâ€oriented Li <scp>DAR</scp> predictors for forest bird habitat suitability modeling. Remote Sensing in Ecology and Conservation, 2020, 6, 5-19.	4.3	9
2	Evaluating the Effectiveness of Spatially Reconfiguring Erosion Hot Spots to Reduce Stream Sediment Load in an Upland Agricultural Catchment of South Korea. Water (Switzerland), 2019, 11, 957.	2.7	3
3	Importance and effectiveness of correction methods for spatial sampling bias in species with sexâ€specific habitat preference. Ecology and Evolution, 2019, 9, 13188-13201.	1.9	1
4	Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science, 2018, 359, 466-469.	12.6	783
5	Classification of rare land cover types: Distinguishing annual and perennial crops in an agricultural catchment in South Korea. PLoS ONE, 2018, 13, e0190476.	2.5	16
6	Effects of plant functional traits on soil stability: intraspecific variability matters. Plant and Soil, 2017, 411, 359-375.	3.7	43
7	Habitat selection by a large herbivore at multiple spatial and temporal scales is primarily governed by food resources. Ecography, 2017, 40, 1014-1027.	4.5	60
8	Daily Based Morgan–Morgan–Finney (DMMF) Model: A Spatially Distributed Conceptual Soil Erosion Model to Simulate Complex Soil Surface Configurations. Water (Switzerland), 2017, 9, 278.	2.7	14
9	Dispersal potential mediates effects of local and landscape factors on plant species richness in <i>maeulsoop</i> forests of Korea. Journal of Vegetation Science, 2015, 26, 631-642.	2.2	8
10	Country, Cover or Protection: What Shapes the Distribution of Red Deer and Roe Deer in the Bohemian Forest Ecosystem?. PLoS ONE, 2015, 10, e0120960.	2.5	40
11	The Afro-alpine dwarf shrub <i>Helichrysum citrispinum</i> favours understorey plants through microclimate amelioration. Plant Ecology and Diversity, 2015, 8, 293-303.	2.4	7
12	LiDAR Remote Sensing of Forest Structure and GPS Telemetry Data Provide Insights on Winter Habitat Selection of European Roe Deer. Forests, 2014, 5, 1374-1390.	2.1	53
13	Mechanistic modelling of animal dispersal offers new insights into range expansion dynamics across fragmented landscapes. Ecography, 2014, 37, 1240-1253.	4.5	61
14	Using dynamic vegetation models to simulate plant range shifts. Ecography, 2014, 37, 1184-1197.	4.5	89
15	Deriving a per-field land use and land cover map in an agricultural mosaic catchment. Earth System Science Data, 2014, 6, 339-352.	9.9	22
16	Can they keep up with climate change? – Integrating specific dispersal abilities of protected Odonata in species distribution modelling. Insect Conservation and Diversity, 2013, 6, 93-103.	3.0	43
17	Functional convergence in water use of trees from different geographical regions: a meta-analysis. Trees - Structure and Function, 2013, 27, 787-799.	1.9	22
18	Intraspecific variation buffers projected climate change impacts on <i>Pinus contorta</i> . Ecology and Evolution, 2013, 3, 437-449.	1.9	97

Björn Reineking

#	Article	IF	CITATIONS
19	Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 2013, 36, 27-46.	4.5	6,250
20	How can we bring together empiricists and modellers in functional biodiversity research?. Basic and Applied Ecology, 2013, 14, 93-101.	2.7	24
21	Species-Specific Traits plus Stabilizing Processes Best Explain Coexistence in Biodiverse Fire-Prone Plant Communities. PLoS ONE, 2013, 8, e65084.	2.5	7
22	Natural enemy interactions constrain pest control in complex agricultural landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5534-5539.	7.1	241
23	Modelling Forest α-Diversity and Floristic Composition — On the Added Value of LiDAR plus Hyperspectral Remote Sensing. Remote Sensing, 2012, 4, 2818-2845.	4.0	75
24	Current measures for distance decay in similarity of species composition are influenced by study extent and grain size. Global Ecology and Biogeography, 2012, 21, 1203-1212.	5.8	76
25	Do small-grain processes matter for landscape scale questions? Sensitivity of a forest landscape model to the formulation of tree growth rate. Landscape Ecology, 2012, 27, 697-711.	4.2	31
26	Biotic Interactions in the Face of Climate Change: A Comparison of Three Modelling Approaches. PLoS ONE, 2012, 7, e51472.	2.5	25
27	Long-term effects of increment coring on Norway spruce mortality. Canadian Journal of Forest Research, 2011, 41, 2326-2336.	1.7	17
28	Projection of climatic suitability for Aedes albopictus Skuse (Culicidae) in Europe under climate change conditions. Global and Planetary Change, 2011, 78, 54-64.	3.5	116
29	Statistical inference for stochastic simulation models - theory and application. Ecology Letters, 2011, 14, 816-827.	6.4	320
30	Did soil development limit spruce (Picea abies) expansion in the Central Alps during the Holocene? Testing a palaeobotanical hypothesis with a dynamic landscape model. Journal of Biogeography, 2011, 38, 933-949.	3.0	81
31	Comparing modelling approaches at two levels of biological organisation – Climate change impacts on selected Natura 2000 habitats. Journal of Vegetation Science, 2011, 22, 699-710.	2.2	21
32	The relative importance of seed competition, resource competition and perturbations on community structure. Biogeosciences, 2011, 8, 1107-1120.	3.3	18
33	The virtual ecologist approach: simulating data and observers. Oikos, 2010, 119, 622-635.	2.7	242
34	Environmental determinants of lightning- v. human-induced forest fire ignitions differ in a temperate mountain region of Switzerland. International Journal of Wildland Fire, 2010, 19, 541.	2.4	63
35	Waldbrandmodellierung - Möglichkeiten und Grenzen Forest fire modeling - limits and possibilities. Schweizerische Zeitschrift Fur Forstwesen, 2010, 161, 433-441.	0.1	4
36	Disappearing refuges in time and space: how environmental change threatens species coexistence. Theoretical Ecology, 2009, 2, 217-227.	1.0	7

Björn Reineking

#	Article	IF	CITATIONS
37	Alien species in a warmer world: risks and opportunities. Trends in Ecology and Evolution, 2009, 24, 686-693.	8.7	1,031
38	Growth–mortality relationships as indicators of lifeâ€history strategies: a comparison of nine tree species in unmanaged European forests. Oikos, 2008, 117, 815-828.	2.7	45
39	A new method for estimating visitation rates of cryptic animals via repeated surveys of indirect signs. Journal of Applied Ecology, 2008, 45, 728-735.	4.0	15
40	Detection of seasonal variability in microclimatic borders and ecotones between forest and savanna. Basic and Applied Ecology, 2008, 9, 275-285.	2.7	46
41	Models for Forest Ecosystem Management: A European Perspective. Annals of Botany, 2007, 101, 1065-1087.	2.9	214
42	Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography, 2007, 30, 609-628.	4.5	2,522
43	Predicting tree death for Fagus sylvatica and Abies alba using permanent plot data. Journal of Vegetation Science, 2007, 18, 525-534.	2.2	41
44	Modeling the Impact of Climate and Vegetation on Fire Regimes in Mountain Landscapes. Landscape Ecology, 2006, 21, 539-554.	4.2	82
45	Constrain to perform: Regularization of habitat models. Ecological Modelling, 2006, 193, 675-690.	2.5	115
46	Optimisation of tree mortality models based on growth patterns. Ecological Modelling, 2006, 197, 196-206.	2.5	18
47	Environmental variability and allocation trade-offs maintain species diversity in a process-based model of succulent plant communities. Ecological Modelling, 2006, 199, 486-504.	2.5	25
48	Road Traffic and Nearby Grassland Bird Patterns in a Suburbanizing Landscape. Environmental Management, 2002, 29, 782-800.	2.7	198