List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1329982/publications.pdf Version: 2024-02-01

ΙΙΔΝΙΙΙΝ ΠΙΙ

#	Article	IF	CITATIONS
1	A benzophenoxazine-dyad as cancer indicator using for fluorescence-guided phototherapy. Sensors and Actuators B: Chemical, 2022, 352, 130990.	7.8	8
2	1,7â€Ðiâ€ <i>tert</i> â€butylâ€6ubstituted azaâ€BODIPYs by Lowâ€Barrier Rotation to Enhance a Photothermalâ€Photodynamic Effect. Chemistry - A European Journal, 2022, 28, .	3.3	11
3	The concept and examples of type-III photosensitizers for cancer photodynamic therapy. CheM, 2022, 8, 197-209.	11.7	78
4	A Glutathione Activatable Photosensitizer for Combined Photodynamic and Gas Therapy under Red Light Irradiation. Advanced Healthcare Materials, 2022, 11, e2102017.	7.6	27
5	Near-infrared vinyl-containing aza-BODIPY nanoparticles as photosensitizer for phototherapy. Dyes and Pigments, 2022, 198, 110026.	3.7	11
6	Se-sensitized NIR hot band absorption photosensitizer for anti-Stokes excitation deep photodynamic therapy. Science China Chemistry, 2022, 65, 563-573.	8.2	19
7	Highly Inoxidizable Heptamethine Cyanine–Glucose Oxidase Conjugate Nanoagent for Combination of Enhanced Photothermal Therapy and Tumor Starvation. Advanced Functional Materials, 2022, 32, .	14.9	28
8	ER-Targeting Cyanine Dye as an NIR Photoinducer to Efficiently Trigger Photoimmunogenic Cancer Cell Death. Journal of the American Chemical Society, 2022, 144, 3477-3486.	13.7	73
9	Biodegradable Ru-Containing Polycarbonate Micelles for Photoinduced Anticancer Multitherapeutic Agent Delivery and Phototherapy Enhancement. Biomacromolecules, 2022, 23, 1733-1744.	5.4	8
10	Nucleic Acid Probe-Based Difunctional Hematology Analysis Kit for Peripheral Blood Cell Analysis. ACS Sensors, 2022, , .	7.8	1
11	Near-infrared upper phenyl-fused BODIPY as a photosensitizer for photothermal–photodynamic therapy. Journal of Materials Chemistry B, 2022, 10, 3048-3054.	5.8	14
12	Nearâ€Infrared Light Triggered H ₂ Generation for Enhanced Photothermal/Photodynamic Therapy against Hypoxic Tumor. Advanced Healthcare Materials, 2022, 11, e2101449.	7.6	21
13	Two-channel responsive luminescent chemosensors for dioxygen species: Molecular oxygen, singlet oxygen and superoxide anion. Coordination Chemistry Reviews, 2021, 427, 213575.	18.8	36
14	A singlet oxygen self-reporting photosensitizer for cancer phototherapy. Chemical Science, 2021, 12, 2515-2520.	7.4	36
15	Enhanced photodynamic therapy for overcoming tumor hypoxia: From microenvironment regulation to photosensitizer innovation. Coordination Chemistry Reviews, 2021, 427, 213604.	18.8	104
16	New Cy5 photosensitizers for cancer phototherapy: a low singlet–triplet gap provides high quantum yield of singlet oxygen. Chemical Science, 2021, 12, 13809-13816.	7.4	19
17	A photosensitizer with conformational restriction for enhanced photodynamic therapy. Chemical Communications, 2021, 57, 9100-9103.	4.1	7
18	Single-Molecule Förster Resonance Energy Transfer-Based Photosensitizer for Synergistic Photodynamic/Photothermal Therapy. ACS Central Science, 2021, 7, 327-334.	11.3	49

#	Article	IF	CITATIONS
19	Lightâ€ŧriggered dePEGylation with decreasing the diameter of hydroxyapatite nanocarriers for enhanced cellular uptake and tumor penetration. Nano Select, 2021, 2, 1954.	3.7	1
20	NIR photosensitizers activated by \hat{I}^3 -glutamyl transpeptidase for precise tumor fluorescence imaging and photodynamic therapy. Science China Chemistry, 2021, 64, 808-816.	8.2	43
21	Photodynamic inheritance from methylene blue to carbon dots against reduction, aggregation, and DNA interference. Science China Materials, 2021, 64, 2325-2336.	6.3	12
22	Red-Light-Responsive Ru Complex Photosensitizer for Lysosome Localization Photodynamic Therapy. ACS Applied Materials & Interfaces, 2021, 13, 19572-19580.	8.0	44
23	A Novel Nanobody–Photosensitizer Conjugate for Hypoxia Resistant Photoimmunotherapy. Advanced Functional Materials, 2021, 31, 2103629.	14.9	21
24	An Approach to Developing Cyanines with Simultaneous Intersystem Crossing Enhancement and Excited-State Lifetime Elongation for Photodynamic Antitumor Metastasis. Journal of the American Chemical Society, 2021, 143, 12345-12354.	13.7	80
25	"Internal and External Combined―Nonradiative Decay-Based Nanoagents for Photoacoustic Image-Guided Highly Efficient Photothermal Therapy. ACS Applied Materials & Interfaces, 2021, 13, 46353-46360.	8.0	16
26	Molecular Design of Monochromophore-Based Bifunctional Photosensitizers for Simultaneous Ratiometric Oxygen Reporting and Photodynamic Cancer Therapy. Analytical Chemistry, 2021, 93, 13539-13547.	6.5	5
27	Reversing Multidrug Resistance by Inducing Mitochondrial Dysfunction for Enhanced Chemo-Photodynamic Therapy in Tumor. ACS Applied Materials & Interfaces, 2021, 13, 45259-45268.	8.0	22
28	Cancer immunogenic cell death via photo-pyroptosis with light-sensitive Indoleamine 2,3-dioxygenase inhibitor conjugate. Biomaterials, 2021, 278, 121167.	11.4	69
29	Carbon dots inspired by structure-inherent targeting for nucleic acid imaging and localized photodynamic therapy. Sensors and Actuators B: Chemical, 2021, 344, 130322.	7.8	13
30	A dual channel fluorescent probe with pH-based specificity to lysosomes for multicolor imaging and localization. Sensors and Actuators B: Chemical, 2021, 344, 130213.	7.8	9
31	Hypoxia-activatable nano-prodrug for fluorescently tracking drug release in mice. Science China Chemistry, 2021, 64, 499-508.	8.2	17
32	A Sequential Dualâ€Model Strategy Based on Photoactivatable Metallopolymer for Onâ€Demand Release of Photosensitizers and Anticancer Drugs. Advanced Science, 2021, 8, e2103334.	11.2	24
33	Emerging Design Principle of Nearâ€Infrared Upconversion Sensitizer Based on Mitochondriaâ€Targeted Organic Dye for Enhanced Photodynamic Therapy. Chemistry - A European Journal, 2021, 27, 16707-16715.	3.3	2
34	Functional two-photon cationic targeted photosensitizers for deep-seated tumor imaging and therapy. Sensors and Actuators B: Chemical, 2020, 304, 127310.	7.8	27
35	Effects of different nozzle materials on atomization results via CFD simulation. Chinese Journal of Chemical Engineering, 2020, 28, 362-368.	3.5	7
36	Catalase-based liposomal for reversing immunosuppressive tumor microenvironment and enhanced cancer chemo-photodynamic therapy. Biomaterials, 2020, 233, 119755.	11.4	139

#	Article	IF	CITATIONS
37	Oxygen-Dependent Regulation of Excited-State Deactivation Process of Rational Photosensitizer for Smart Phototherapy. Journal of the American Chemical Society, 2020, 142, 1510-1517.	13.7	167
38	Precise photodynamic therapy: Penetrating the nuclear envelope with photosensitive carbon dots. Carbon, 2020, 159, 74-82.	10.3	57
39	A photosensitizer-inhibitor conjugate for photodynamic therapy with simultaneous inhibition of treatment escape pathways. Biomaterials, 2020, 257, 120262.	11.4	19
40	Chemiluminescence for bioimaging and therapeutics: recent advances and challenges. Chemical Society Reviews, 2020, 49, 6800-6815.	38.1	272
41	An APN-activated NIR photosensitizer for cancer photodynamic therapy and fluorescence imaging. Biomaterials, 2020, 253, 120089.	11.4	99
42	Ultrasound-degradable serum albumin nanoplatform for <i>in situ</i> controlled drug release. Chemical Communications, 2020, 56, 7503-7506.	4.1	4
43	Aminopeptidase N Activatable Fluorescent Probe for Tracking Metastatic Cancer and Image-Guided Surgery via <i>in Situ</i> Spraying. Journal of the American Chemical Society, 2020, 142, 6381-6389.	13.7	187
44	Stimuli-Responsive Polysaccharide Enveloped Liposome for Targeting and Penetrating Delivery of survivin-shRNA into Breast Tumor. ACS Applied Materials & Interfaces, 2020, 12, 22074-22087.	8.0	42
45	Lysozyme-targeted ratiometric fluorescent probe for SO2 in living cells. Dyes and Pigments, 2020, 180, 108440.	3.7	20
46	A Single Molecule Drug Targeting Photosensitizer for Enhanced Breast Cancer Photothermal Therapy. Small, 2020, 16, e1907677.	10.0	62
47	Revealing the Photodynamic Stress <i>In Situ</i> with a Dual-Mode Two-Photon ¹ O ₂ Fluorescent Probe. ACS Sensors, 2020, 5, 1411-1418.	7.8	9
48	Small-molecule fluorescent probes for imaging gaseous signaling molecules: current progress and future implications. Chemical Science, 2020, 11, 5127-5141.	7.4	161
49	Mitochondria-Anchored Colorimetric and Ratiometric Fluorescent Chemosensor for Visualizing Cysteine/Homocysteine in Living Cells and <i>Daphnia magna</i> Model. Analytical Chemistry, 2019, 91, 12531-12537.	6.5	66
50	<i>In situ</i> imaging of aminopeptidase N activity in hepatocellular carcinoma: a migration model for tumour using an activatable two-photon NIR fluorescent probe. Chemical Science, 2019, 10, 1619-1625.	7.4	97
51	Development of a red-light emission hypoxia-sensitive two-photon fluorescent probe for <i>in vivo</i> nitroreductase imaging. Journal of Materials Chemistry B, 2019, 7, 408-414.	5.8	47
52	A nitroxyl-responsive near-infrared fluorescent chemosensor for visualizing H ₂ S/NO crosstalk in biological systems. Chemical Communications, 2019, 55, 8583-8586.	4.1	37
53	Gold nanoparticle-based plasmonic probe for selective recognition of adenosine. Sensors and Actuators B: Chemical, 2019, 296, 126591.	7.8	8
54	Oligo Hyaluronan oated Silica/Hydroxyapatite Degradable Nanoparticles for Targeted Cancer Treatment. Advanced Science, 2019, 6, 1900716.	11.2	51

#	Article	IF	CITATIONS
55	Simultaneous visualization of cysteine/homocysteine and glutathione in living cells and Daphnia magna via dual-signaling fluorescent chemosensor. Dyes and Pigments, 2019, 168, 189-196.	3.7	33
56	Boron Dipyrromethene Nanoâ€Photosensitizers for Anticancer Phototherapies. Small, 2019, 15, e1804927.	10.0	135
57	Carbon Dots for In Vivo Bioimaging and Theranostics. Small, 2019, 15, e1805087.	10.0	337
58	Thiol-activated fluorescent probe for sensitive detection and imaging of proteins. Sensors and Actuators B: Chemical, 2019, 287, 118-123.	7.8	19
59	Superoxide Radical Photogenerator with Amplification Effect: Surmounting the Achilles' Heels of Photodynamic Oncotherapy. Journal of the American Chemical Society, 2019, 141, 2695-2702.	13.7	238
60	Mitochondria-Accessing Ratiometric Fluorescent Probe for Imaging Endogenous Superoxide Anion in Live Cells and <i>Daphnia magna</i> . ACS Sensors, 2018, 3, 735-741.	7.8	64
61	Recognition of Exogenous and Endogenous Nitroxyl in Living Cells via a Two-Photon Fluorescent Probe. Analytical Chemistry, 2018, 90, 4641-4648.	6.5	45
62	A ratiometric fluorescence probe for lysosomal polarity. Biomaterials, 2018, 164, 98-105.	11.4	87
63	A novel fluorescent probe for the ratiometric recognition of protein based on intramolecular charge transfer. Sensors and Actuators B: Chemical, 2018, 265, 204-210.	7.8	27
64	Quantitative recognition and ratiometric cell imaging of HSO3â^' inspired of confined-space based FRET system within human serum albumin. Sensors and Actuators B: Chemical, 2018, 267, 104-110.	7.8	20
65	Biodegradable Drug-Loaded Hydroxyapatite Nanotherapeutic Agent for Targeted Drug Release in Tumors. ACS Applied Materials & Interfaces, 2018, 10, 7832-7840.	8.0	99
66	Celecoxib Conjugated Fluorescent Probe for Identification and Discrimination of Cyclooxygenase-2 Enzyme in Cancer Cells. Analytical Chemistry, 2018, 90, 5187-5193.	6.5	54
67	Fabrication of artificial fluorescent protein probe for HSA recognition and relay sensing Ag + by functional microenvironment-sensitive fluorescent dye. Sensors and Actuators B: Chemical, 2018, 263, 661-667.	7.8	20
68	Anticancer drug delivery systems based on inorganic nanocarriers with fluorescent tracers. AICHE Journal, 2018, 64, 835-859.	3.6	28
69	A BODIPYâ€based Fluorescent Probe for Thiophenol. Chinese Journal of Chemistry, 2018, 36, 119-123.	4.9	29
70	Highly Selective Red-Emitting Fluorescent Probe for Imaging Cancer Cells in Situ by Targeting Pim-1 Kinase. ACS Applied Materials & Interfaces, 2018, 10, 1499-1507.	8.0	28
71	Bromo-pentamethine as mitochondria-targeted photosensitizers for cancer cell apoptosis with high efficiency. Dyes and Pigments, 2018, 149, 633-638.	3.7	18
72	A plasmonic nano-sensor for the fast detection of Ag+ based on synergistic coordination-inspired gold nanoparticle. Sensors and Actuators B: Chemical, 2018, 255, 808-813.	7.8	17

#	Article	IF	CITATIONS
73	Dual stimuli-responsive saccharide core based nanocarrier for efficient Birc5-shRNA delivery. Journal of Materials Chemistry B, 2018, 6, 7530-7542.	5.8	6
74	Lighting-Up Tumor for Assisting Resection via Spraying NIR Fluorescent Probe of Î ³ -Glutamyltranspeptidas. Frontiers in Chemistry, 2018, 6, 485.	3.6	21
75	Near-Infrared Light-Initiated Molecular Superoxide Radical Generator: Rejuvenating Photodynamic Therapy against Hypoxic Tumors. Journal of the American Chemical Society, 2018, 140, 14851-14859.	13.7	442
76	De Novo Design of Phototheranostic Sensitizers Based on Structure-Inherent Targeting for Enhanced Cancer Ablation. Journal of the American Chemical Society, 2018, 140, 15820-15826.	13.7	167
77	Aminopeptidaseâ€Nâ€activated Theranostic Prodrug for NIR Tracking of Local Tumor Chemotherapy. Advanced Functional Materials, 2018, 28, 1805128.	14.9	65
78	An estrogen receptor targeted ruthenium complex as a two-photon photodynamic therapy agent for breast cancer cells. Chemical Communications, 2018, 54, 7038-7041.	4.1	74
79	Differentiating RNA from DNA by a molecular fluorescent probe based on the "door-bolt―mechanism biomaterials. Biomaterials, 2018, 177, 78-87.	11.4	52
80	Ratiometric real-time monitoring of hydroxyapatite–doxorubicin nanotheranostic agents for on-demand tumor targeted chemotherapy. Materials Chemistry Frontiers, 2018, 2, 1791-1798.	5.9	13
81	Imaging Î ³ -Glutamyltranspeptidase for tumor identification and resection guidance via enzyme-triggered fluorescent probe. Biomaterials, 2018, 179, 1-14.	11.4	88
82	Visualization of methylglyoxal in living cells and diabetic mice model with a 1,8-naphthalimide-based two-photon fluorescent probe. Chemical Science, 2018, 9, 6758-6764.	7.4	72
83	Encapsulated Dye/Polymer Nanoparticles Prepared via Miniemulsion Polymerization for Inkjet Printing. ACS Omega, 2018, 3, 7380-7387.	3.5	30
84	Fluorescence completely separated ratiometric probe for HClO in lysosomes. Sensors and Actuators B: Chemical, 2017, 246, 293-299.	7.8	60
85	Lighting-up breast cancer cells by a near-infrared fluorescent probe based on KIAA1363 enzyme-targeting. Chemical Communications, 2017, 53, 4857-4860.	4.1	36
86	A two-photon NIR-to-NIR fluorescent probe for imaging hydrogen peroxide in living cells. Biosensors and Bioelectronics, 2017, 94, 536-543.	10.1	94
87	In-situ colorimetric recognition of arylamine based on chemodosimeter-functionalized gold nanoparticle. Sensors and Actuators B: Chemical, 2017, 248, 318-323.	7.8	9
88	A proton-activatable aminated-chrysophanol sensitizer for photodynamic therapy. Dyes and Pigments, 2017, 147, 476-483.	3.7	13
89	Confined-Space Mechanism Inspired by the Ingenious Fabrication of a Förster Resonance Energy Transfer System as a Ratiometric Probe for Ag ⁺ Recognition. Industrial & Engineering Chemistry Research, 2017, 56, 10591-10596.	3.7	6
90	A lysosome-targeted BODIPY as potential NIR photosensitizer for photodynamic therapy. Dyes and Pigments, 2017, 147, 99-105.	3.7	95

#	Article	IF	CITATIONS
91	Probing Thiophenol Pollutant in Solutions and Cells with BODIPY-Based Fluorescent Probe. Industrial & Engineering Chemistry Research, 2017, 56, 9303-9309.	3.7	21
92	Gold nanoparticle-based nano-probe for the colorimetric sensing of Cr ³⁺ and Cr ₂ O ₇ ^{2â^'} by the coordination strategy. Nanoscale, 2017, 9, 19139-19144.	5.6	30
93	An NIR fluorescent probe of uric HSA for renal diseases warning. Dyes and Pigments, 2016, 133, 79-85.	3.7	61
94	Fluorescent Probes for Sensing and Imaging within Specific Cellular Organelles. Accounts of Chemical Research, 2016, 49, 2115-2126.	15.6	741
95	Gold Nanoparticle-Based Colorimetric Recognition of Creatinine with Good Selectivity and Sensitivity. Industrial & Engineering Chemistry Research, 2016, 55, 12334-12340.	3.7	45
96	A Fluorescent Probe for Ratiometric Imaging of SO ₂ Derivatives in Mitochondria of Living Cells. Industrial & Engineering Chemistry Research, 2016, 55, 1477-1483.	3.7	90
97	Microenvironment-Sensitive Fluorescent Dyes for Recognition of Serum Albumin in Urine and Imaging in Living Cells. Industrial & Engineering Chemistry Research, 2016, 55, 527-533.	3.7	61
98	Colorimetric Detection of Creatinine Based on Plasmonic Nanoparticles via Synergistic Coordination Chemistry. Small, 2015, 11, 4104-4110.	10.0	54
99	In Situ Colorimetric Recognition of Melamine Based on Thymine Derivative-Functionalized Gold Nanoparticle. Industrial & Engineering Chemistry Research, 2015, 54, 12011-12016.	3.7	22
100	Gold nanoparticle-based colorimetric detection of mercury ion via coordination chemistry. Sensors and Actuators B: Chemical, 2015, 212, 481-486.	7.8	41
101	Contaminant Detection: Optical Reading of Contaminants in Aqueous Media Based on Gold Nanoparticles (Small 17/2014). Small, 2014, 10, 3426-3426.	10.0	1
102	Optical Reading of Contaminants in Aqueous Media Based on Gold Nanoparticles. Small, 2014, 10, 3461-3479.	10.0	72
103	A colorimetric logic gate based on free gold nanoparticles and the coordination strategy between melamine and mercury ions. Chemical Communications, 2013, 49, 4196-4198.	4.1	121
104	Urine for Plasmonic Nanoparticleâ€Based Colorimetric Detection of Mercury Ion. Small, 2013, 9, 4104-4111.	10.0	102
105	Colorimetric Detection of Mercury Ions Based on Plasmonic Nanoparticles. Small, 2013, 9, 1467-1481.	10.0	255
106	Colorimetric Chemodosimeter Based on Diazonium–Goldâ€Nanoparticle Complexes for Sulfite Ion Detection in Solution. Small, 2012, 8, 3412-3416.	10.0	53
107	Fluorescent chemodosimeters using "mild―chemical events for the detection of small anions and cations in biological and environmental media. Chemical Society Reviews, 2012, 41, 4511.	38.1	652
108	Flexible Colorimetric Detection of Mercuric Ion by Simply Mixing Nanoparticles and Oligopeptides. Small, 2011, 7, 1407-1411.	10.0	82

#	Article	IF	CITATIONS
109	A Selective Fluorescent Sensor for Imaging Cd2+in Living Cells. Journal of the American Chemical Society, 2007, 129, 1500-1501.	13.7	596
110	Ringâ€fused dipyrrolyldiketone difluoroboron complexes for pioneering exploration of photothermal effect. Asian Journal of Organic Chemistry, 0, , .	2.7	0