Sue C Kinnamon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1329768/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ATP Signaling Is Crucial for Communication from Taste Buds to Gustatory Nerves. Science, 2005, 310, 1495-1499.	12.6	682
2	FGF21 Mediates Endocrine Control of Simple Sugar Intake and Sweet Taste Preference by the Liver. Cell Metabolism, 2016, 23, 335-343.	16.2	270
3	Amiloride-sensitive channels in type I fungiform taste cells in mouse. BMC Neuroscience, 2008, 9, 1.	1.9	269
4	Immunocytochemical evidence for co-expression of Type III IP3 receptor with signaling components of bitter taste transduction. BMC Neuroscience, 2001, 2, 6.	1.9	216
5	Mouse taste cells with G protein-coupled taste receptors lack voltage-gated calcium channels and SNAP-25. BMC Biology, 2006, 4, 7.	3.8	212
6	Morphologic characterization of rat taste receptor cells that express components of the phospholipase C signaling pathway. Journal of Comparative Neurology, 2004, 468, 311-321.	1.6	207
7	Epithelial Na+ channel subunits in rat taste cells: Localization and regulation by aldosterone. Journal of Comparative Neurology, 1999, 405, 406-420.	1.6	180
8	Cellular and Neural Responses to Sour Stimuli Require the Proton Channel Otop1. Current Biology, 2019, 29, 3647-3656.e5.	3.9	132
9	Nasal Solitary Chemoreceptor Cell Responses to Bitter and Trigeminal Stimulants In Vitro. Journal of Neurophysiology, 2008, 99, 2929-2937.	1.8	114
10	The K ⁺ channel K _{IR} 2.1 functions in tandem with proton influx to mediate sour taste transduction. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E229-38.	7.1	105
11	Umami taste transduction mechanisms. American Journal of Clinical Nutrition, 2009, 90, 753S-755S.	4.7	92
12	Role of the ectonucleotidase NTPDase2 in taste bud function. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14789-14794.	7.1	90
13	Physiological Evidence for Ionotropic and Metabotropic Glutamate Receptors in Rat Taste Cells. Journal of Neurophysiology, 1999, 82, 2061-2069.	1.8	78
14	Postsynaptic P2X3â€containing receptors in gustatory nerve fibres mediate responses to all taste qualities in mice. Journal of Physiology, 2015, 593, 1113-1125.	2.9	74
15	Recent advances in taste transduction and signaling. F1000Research, 2019, 8, 2117.	1.6	56
16	The Role of 5-HT ₃ Receptors in Signaling from Taste Buds to Nerves. Journal of Neuroscience, 2015, 35, 15984-15995.	3.6	55
17	Knocking Out P2X Receptors Reduces Transmitter Secretion in Taste Buds. Journal of Neuroscience, 2011, 31, 13654-13661.	3.6	52
18	Tastants evoke cAMP signal in taste buds that is independent of calcium signaling. American Journal of Physiology - Cell Physiology, 2006, 291, C237-C244.	4.6	46

SUE C KINNAMON

#	Article	IF	CITATIONS
19	Expression of T1Rs and Gustducin in Palatal Taste Buds of Mice. Chemical Senses, 2007, 32, 255-262.	2.0	44
20	Evidence for a role of glutamate as an efferent transmitter in taste buds. BMC Neuroscience, 2010, 11, 77.	1.9	40
21	Capacitance Measurements of Regulated Exocytosis in Mouse Taste Cells. Journal of Neuroscience, 2010, 30, 14695-14701.	3.6	36
22	Sour taste: receptors, cells and circuits. Current Opinion in Physiology, 2021, 20, 8-15.	1.8	29
23	Electrophysiological and morphological properties of light and dark cells isolated from mudpuppy taste buds. Journal of Comparative Neurology, 1994, 346, 601-612.	1.6	26
24	Responses to Di-Sodium Guanosine 5′-Monophosphate and Monosodiuml-Glutamate in Taste Receptor Cells of Rat Fungiform Papillae. Journal of Neurophysiology, 2003, 89, 1434-1439.	1.8	26
25	A bitter-sweet beginning. Nature, 1996, 381, 737-738.	27.8	25
26	A2BR Adenosine Receptor Modulates Sweet Taste in Circumvallate Taste Buds. PLoS ONE, 2012, 7, e30032.	2.5	24
27	Mice Lacking Pannexin 1 Release ATP and Respond Normally to All Taste Qualities. Chemical Senses, 2015, 40, 461-467.	2.0	24
28	Development of voltage-dependent currents in taste receptor cells. , 1996, 365, 278-288.		22
29	Type III Cells in Anterior Taste Fields Are More Immunohistochemically Diverse Than Those of Posterior Taste Fields in Mice. Chemical Senses, 2017, 42, 759-767.	2.0	22
30	Control of ventilatory movements in the aquatic insect Corydalus comutus: central effect of hypoxia. Physiological Entomology, 1984, 9, 19-28.	1.5	18
31	Expression of Bitter Taste Receptors and Solitary Chemosensory Cell Markers in the Human Sinonasal Cavity. Chemical Senses, 2019, 44, 483-495.	2.0	17
32	Function, Innervation, and Neurotransmitter Signaling in Mice Lacking Type-II Taste Cells. ENeuro, 2020, 7, ENEURO.0339-19.2020.	1.9	16
33	Glutamate: Tastant and Neuromodulator in Taste Buds. Advances in Nutrition, 2016, 7, 823S-827S.	6.4	15
34	Sugar causes obesity and metabolic syndrome in mice independently of sweet taste. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E276-E290.	3.5	15
35	Physiological and Behavioral Responses to Optogenetic Stimulation of PKD2L1 ⁺ Type III Taste Cells. ENeuro, 2019, 6, ENEURO.0107-19.2019.	1.9	15
36	Using Taste to Clear the Air(ways). Science, 2009, 325, 1081-1082.	12.6	14

SUE C KINNAMON

#	Article	IF	CITATIONS
37	Neurosensory transmission without a synapse: new perspectives on taste signaling. BMC Biology, 2013, 11, 42.	3.8	13
38	New evidence for fat as a primary taste quality. Acta Physiologica, 2019, 226, e13246.	3.8	11
39	Is the Amiloride-Sensitive Na+ Channel in Taste Cells Really ENaC?. Chemical Senses, 2020, 45, 233-234.	2.0	10
40	Optogenetic Activation of Type III Taste Cells Modulates Taste Responses. Chemical Senses, 2020, 45, 533-539.	2.0	9
41	GAD65Cre Drives Reporter Expression in Multiple Taste Cell Types. Chemical Senses, 2021, 46, .	2.0	5
42	Purinergic neurotransmission in the gustatory system. Autonomic Neuroscience: Basic and Clinical, 2021, 236, 102874.	2.8	4
43	G Protein–Coupled Taste Transduction. , 2016, , 271-285.		3
44	The Role of ATP and Purinergic Receptors in Taste Signaling. Handbook of Experimental Pharmacology, 2021, , 91-107.	1.8	3
45	Why low concentrations of salt enhance sweet taste. Acta Physiologica, 2020, 230, e13560.	3.8	2
46	Role of Apical Ion Channels in Sour Taste Transduction. Novartis Foundation Symposium, 1993, 179, 201-217.	1.1	2