Qin Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1329671/publications.pdf Version: 2024-02-01

OIN CHENC

#	Article	IF	CITATIONS
1	Modelling the epidemiology of malaria and spread of HRP2-negative Plasmodium falciparum following the replacement of HRP2-detecting rapid diagnostic tests. PLOS Global Public Health, 2022, 2, e0000106.	1.6	3
2	Screening strategies and laboratory assays to support Plasmodium falciparum histidine-rich protein deletion surveillance: where we are and what is needed. Malaria Journal, 2022, 21, .	2.3	8
3	Dormant <i>Plasmodium falciparum</i> Parasites in Human Infections Following Artesunate Therapy. Journal of Infectious Diseases, 2021, 223, 1631-1638.	4.0	18
4	<i>Plasmodium falciparum</i> Histidine-Rich Protein 2 and 3 Gene Deletions in Strains from Nigeria, Sudan, and South Sudan. Emerging Infectious Diseases, 2021, 27, 471-479.	4.3	23
5	The changing epidemiology of Plasmodium vivax: Insights from conventional and novel surveillance tools. PLoS Medicine, 2021, 18, e1003560.	8.4	28
6	Genetic diversity and genetic relatedness in Plasmodium falciparum parasite population in individuals with uncomplicated malaria based on microsatellite typing in Eastern and Western regions of Uganda, 2019–2020. Malaria Journal, 2021, 20, 242.	2.3	5
7	Epidemiology of mutant Plasmodium falciparum parasites lacking histidine-rich protein 2/3 genes in Eritrea 2 years after switching from HRP2-based RDTs. Scientific Reports, 2021, 11, 21082.	3.3	15
8	Molecular surveillance reveals the presence of pfhrp2 and pfhrp3 gene deletions in Plasmodium falciparum parasite populations in Uganda, 2017–2019. Malaria Journal, 2020, 19, 300.	2.3	19
9	Impact of Plasmodium falciparum gene deletions on malaria rapid diagnostic test performance. Malaria Journal, 2020, 19, 392.	2.3	25
10	Limitations of rapid diagnostic tests in malaria surveys in areas with varied transmission intensity in Uganda 2017-2019: Implications for selection and use of HRP2 RDTs. PLoS ONE, 2020, 15, e0244457.	2.5	17
11	Prevalence of <i>Plasmodium falciparum</i> lacking histidine-rich proteins 2 and 3: a systematic review. Bulletin of the World Health Organization, 2020, 98, 558-568F.	3.3	35
12	Plasmodium falciparum Rapid Test Failures Threaten Diagnosis and Treatment of U.S. Military Personnel. Military Medicine, 2019, 185, e1-e4.	0.8	0
13	Cytochrome P450 2D6 profiles and their relationship with outcomes of primaquine anti-relapse therapy in Australian Defence Force personnel deployed to Papua New Guinea and East Timor. Malaria Journal, 2019, 18, 140.	2.3	15
14	Polymorphisms in Plasmodium falciparum Kelch 13 and P. vivax Kelch 12 Genes in Parasites Collected from Three South Pacific Countries Prior to Extensive Exposure to Artemisinin Combination Therapies. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	5
15	Cytoplasmic and periplasmic expression of recombinant shark VNAR antibody in <i>Escherichia coli</i> . Preparative Biochemistry and Biotechnology, 2019, 49, 315-327.	1.9	2
16	A review of the WHO malaria rapid diagnostic test product testing programme (2008–2018): performance, procurement and policy. Malaria Journal, 2019, 18, 387.	2.3	86
17	Isolation and characterization of malaria PfHRP2 specific VNAR antibody fragments from immunized shark phage display library. Malaria Journal, 2018, 17, 383.	2.3	26
18	An assessment of false positive rates for malaria rapid diagnostic tests caused by non-Plasmodium infectious agents and immunological factors. PLoS ONE, 2018, 13, e0197395.	2.5	23

#	Article	IF	CITATIONS
19	The Development of Single Domain Antibodies for Diagnostic and Therapeutic Applications. , 2018, , .		3
20	Major Threat to Malaria Control Programs by <i>Plasmodium falciparum</i> Lacking Histidine-Rich Protein 2, Eritrea. Emerging Infectious Diseases, 2018, 24, 462-470.	4.3	135
21	Plasmodium falciparum and Plasmodium vivax Demonstrate Contrasting Chloroquine Resistance Reversal Phenotypes. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	7
22	Implications of Parasites Lacking Plasmodium falciparum Histidine-Rich Protein 2 on Malaria Morbidity and Control When Rapid Diagnostic Tests Are Used for Diagnosis. Journal of Infectious Diseases, 2017, 215, 1156-1166.	4.0	46
23	Challenges for achieving safe and effective radical cure of Plasmodium vivax: a round table discussion of the APMEN Vivax Working Group. Malaria Journal, 2017, 16, 141.	2.3	52
24	Single Domain Antibodies as New Biomarker Detectors. Diagnostics, 2017, 7, 52.	2.6	29
25	VivaxGEN: An open access platform for comparative analysis of short tandem repeat genotyping data in Plasmodium vivax populations. PLoS Neglected Tropical Diseases, 2017, 11, e0005465.	3.0	13
26	Defining the next generation of Plasmodium vivax diagnostic tests for control and elimination: Target product profiles. PLoS Neglected Tropical Diseases, 2017, 11, e0005516.	3.0	24
27	Sensitive Detection of Plasmodium vivax Using a High-Throughput, Colourimetric Loop Mediated Isothermal Amplification (HtLAMP) Platform: A Potential Novel Tool for Malaria Elimination. PLoS Neglected Tropical Diseases, 2016, 10, e0004443.	3.0	38
28	Correlation between Cyclin Dependent Kinases and Artemisinin-Induced Dormancy in Plasmodium falciparum In Vitro. PLoS ONE, 2016, 11, e0157906.	2.5	16
29	A Sensitive, Colorimetric, High-Throughput Loop-Mediated Isothermal Amplification Assay for the Detection of Plasmodium knowlesi. American Journal of Tropical Medicine and Hygiene, 2016, 95, 120-122.	1.4	21
30	Novel molecular diagnostic tools for malaria elimination: a review of options from the point of view of high-throughput and applicability in resource limited settings. Malaria Journal, 2016, 15, 88.	2.3	102
31	Dihydrofolate-Reductase Mutations in Plasmodium knowlesi Appear Unrelated to Selective Drug Pressure from Putative Human-To-Human Transmission in Sabah, Malaysia. PLoS ONE, 2016, 11, e0149519.	2.5	17
32	The Utility of Malaria Rapid Diagnostic Tests as a Tool in Enhanced Surveillance for Malaria Elimination in Vanuatu. PLoS ONE, 2016, 11, e0167136.	2.5	7
33	Systematic Review of Sub-microscopic P. vivax Infections: Prevalence and Determining Factors. PLoS Neglected Tropical Diseases, 2015, 9, e3413.	3.0	114
34	Pan-Plasmodium band sensitivity for Plasmodium falciparum detection in combination malaria rapid diagnostic tests and implications for clinical management. Malaria Journal, 2015, 14, 115.	2.3	30
35	Mitochondrial Membrane Potential in a Small Subset of Artemisinin-Induced Dormant <i>Plasmodium falciparum</i> Parasites In Vitro. Journal of Infectious Diseases, 2015, 212, 426-434.	4.0	62
36	A simple, high-throughput, colourimetric, field applicable loop-mediated isothermal amplification (HtLAMP) assay for malaria elimination. Malaria Journal, 2015, 14, 335.	2.3	33

#	Article	IF	CITATIONS
37	Circulating antibodies against Plasmodium falciparum histidine-rich proteins 2 interfere with antigen detection by rapid diagnostic tests. Malaria Journal, 2014, 13, 480.	2.3	31
38	Genetic mutations in Plasmodium falciparum and Plasmodium vivax dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS) in Vanuatu and Solomon Islands prior to the introduction of artemisinin combination therapy. Malaria Journal, 2014, 13, 402.	2.3	6
39	Genetic mutations in pfcrt and pfmdr1 at the time of artemisinin combination therapy introduction in South Pacific islands of Vanuatu and Solomon Islands. Malaria Journal, 2014, 13, 406.	2.3	10
40	Fatty Acid Synthesis and Pyruvate Metabolism Pathways Remain Active in Dihydroartemisinin-Induced Dormant Ring Stages of Plasmodium falciparum. Antimicrobial Agents and Chemotherapy, 2014, 58, 4773-4781.	3.2	62
41	Genetic diversity and population structure of Plasmodium vivax in Central China. Malaria Journal, 2014, 13, 262.	2.3	22
42	Production and characterization of specific monoclonal antibodies binding the Plasmodium falciparum diagnostic biomarker, histidine-rich protein 2. Malaria Journal, 2014, 13, 277.	2.3	20
43	Plasmodium falciparum parasites lacking histidine-rich protein 2 and 3: a review and recommendations for accurate reporting. Malaria Journal, 2014, 13, 283.	2.3	176
44	Review of key knowledge gaps in glucose-6-phosphate dehydrogenase deficiency detection with regard to the safe clinical deployment of 8-aminoquinoline treatment regimens: a workshop report. Malaria Journal, 2013, 12, 112.	2.3	112
45	Population genetics of Plasmodium falciparum and Plasmodium vivax and asymptomatic malaria in Temotu Province, Solomon Islands. Malaria Journal, 2013, 12, 429.	2.3	42
46	Comparison of Rapid Diagnostic Tests for the Detection of Plasmodium vivax Malaria in South Korea. PLoS ONE, 2013, 8, e64353.	2.5	18
47	An Analytical Method for Assessing Stage-Specific Drug Activity in Plasmodium vivax Malaria: Implications for Ex Vivo Drug Susceptibility Testing. PLoS Neglected Tropical Diseases, 2012, 6, e1772.	3.0	23
48	Phenotypic Changes in Artemisinin-Resistant Plasmodium falciparum Lines <i>In Vitro</i> : Evidence for Decreased Sensitivity to Dormancy and Growth Inhibition. Antimicrobial Agents and Chemotherapy, 2012, 56, 428-431.	3.2	63
49	Identification of Optimal Epitopes for Plasmodium falciparum Rapid Diagnostic Tests That Target Histidine-Rich Proteins 2 and 3. Journal of Clinical Microbiology, 2012, 50, 1397-1405.	3.9	57
50	Artemisinin resistance in Plasmodium falciparum: A process linked to dormancy?. International Journal for Parasitology: Drugs and Drug Resistance, 2012, 2, 249-255.	3.4	69
51	Phenotypic and genotypic characterisation of drug-resistant Plasmodium vivax. Trends in Parasitology, 2012, 28, 522-529.	3.3	70
52	Operational research to inform a sub-national surveillance intervention for malaria elimination in Solomon Islands. Malaria Journal, 2012, 11, 101.	2.3	32
53	Functional Analysis of Plasmodium vivax Dihydrofolate Reductase-Thymidylate Synthase Genes through Stable Transformation of Plasmodium falciparum. PLoS ONE, 2012, 7, e40416.	2.5	7
54	Transcription and Expression of Plasmodium falciparum Histidine-Rich Proteins in Different Stages and Strains: Implications for Rapid Diagnostic Tests. PLoS ONE, 2011, 6, e22593.	2.5	61

Qin Cheng

#	Article	IF	CITATIONS
55	Malaria and other vector-borne infection surveillance in the U.S. Department of Defense Armed Forces Health Surveillance Center-Global Emerging Infections Surveillance program: review of 2009 accomplishments. BMC Public Health, 2011, 11, S9.	2.9	13
56	Laboratory demonstration of a prozone-like effect in HRP2-detecting malaria rapid diagnostic tests: implications for clinical management. Malaria Journal, 2011, 10, 286.	2.3	71
57	Artemisinin-induced parasite dormancy: a plausible mechanism for treatment failure. Malaria Journal, 2011, 10, 56.	2.3	78
58	A Large Proportion of P. falciparum Isolates in the Amazon Region of Peru Lack pfhrp2 and pfhrp3: Implications for Malaria Rapid Diagnostic Tests. PLoS ONE, 2010, 5, e8091.	2.5	382
59	Interrupting Malaria Transmission: Quantifying the Impact of Interventions in Regions of Low to Moderate Transmission. PLoS ONE, 2010, 5, e15149.	2.5	12
60	Role of <i>pfmdr1</i> Amplification and Expression in Induction of Resistance to Artemisinin Derivatives in <i>Plasmodium falciparum</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 2455-2464.	3.2	108
61	Artemisininâ€Induced Dormancy in <i>Plasmodium falciparum</i> : Duration, Recovery Rates, and Implications in Treatment Failure. Journal of Infectious Diseases, 2010, 202, 1362-1368.	4.0	195
62	Defining the Role of Mutations in <i>Plasmodium vivax</i> Dihydrofolate Reductase-Thymidylate Synthase Gene Using an Episomal <i>Plasmodium falciparum</i> Transfection System. Antimicrobial Agents and Chemotherapy, 2010, 54, 3927-3932.	3.2	13
63	Deamplification of pfmdr1 -Containing Amplicon on Chromosome 5 in Plasmodium falciparum Is Associated with Reduced Resistance to Artelinic Acid In Vitro. Antimicrobial Agents and Chemotherapy, 2010, 54, 3395-3401.	3.2	30
64	<i>Plasmodium knowlesi</i> in Human, Indonesian Borneo. Emerging Infectious Diseases, 2010, 16, 672-674.	4.3	104
65	A large proportion of asymptomatic Plasmodium infections with low and sub-microscopic parasite densities in the low transmission setting of Temotu Province, Solomon Islands: challenges for malaria diagnostics in an elimination setting. Malaria Journal, 2010, 9, 254.	2.3	243
66	Global sequence variation in the histidine-rich proteins 2 and 3 of Plasmodium falciparum: implications for the performance of malaria rapid diagnostic tests. Malaria Journal, 2010, 9, 129.	2.3	136
67	Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature, 2008, 455, 757-763.	27.8	756
68	Can estimates of antimalarial efficacy from field studies be improved?. Trends in Parasitology, 2008, 24, 68-73.	3.3	17
69	Multiple origins of resistance-conferring mutations in Plasmodium vivax dihydrofolate reductase. Malaria Journal, 2008, 7, 72.	2.3	35
70	No Genetic Bottleneck in <i>Plasmodium falciparum</i> Wild-Type Pf <i>crt</i> Alleles Reemerging in Hainan Island, China, following High-Level Chloroquine Resistance. Antimicrobial Agents and Chemotherapy, 2008, 52, 345-347.	3.2	14
71	Malaria in Pregnancy in the Solomon Islands: Barriers to Prevention and Control. American Journal of Tropical Medicine and Hygiene, 2008, 78, 449-454.	1.4	3
72	Relapses ofPlasmodium vivaxInfection Result from Clonal Hypnozoites Activated at Predetermined Intervals. Journal of Infectious Diseases, 2007, 195, 934-941.	4.0	144

#	Article	IF	CITATIONS
73	Differential Changes inPlasmodium falciparum varTranscription during Adaptation to Culture. Journal of Infectious Diseases, 2007, 195, 748-755.	4.0	53
74	Characterization of the Antibody Response against <i>Plasmodium falciparum</i> Erythrocyte Membrane Protein 1 in Human Volunteers. Infection and Immunity, 2007, 75, 5967-5973.	2.2	10
75	A NovelPlasmodium falciparumExpression System for Assessing Antifolate Resistance Caused by MutantP. vivaxDihydrofolate Reductase–Thymidylate Synthase. Journal of Infectious Diseases, 2007, 196, 467-474.	4.0	10
76	Chloroquine Resistant Plasmodium vivax: In Vitro Characterisation and Association with Molecular Polymorphisms. PLoS ONE, 2007, 2, e1089.	2.5	187
77	Plasmodium falciparum infection dynamics and transmission potential following treatment with sulfadoxine-pyrimethamine. Journal of Antimicrobial Chemotherapy, 2006, 58, 47-51.	3.0	8
78	Physical Linkage to Drug Resistance Genes Results in Conservation ofvarGenes among West PacificPlasmodium falciparumIsolates. Journal of Infectious Diseases, 2006, 194, 939-948.	4.0	11
79	Effect of Sequence Variation in Plasmodium falciparum Histidine- Rich Protein 2 on Binding of Specific Monoclonal Antibodies: Implications for Rapid Diagnostic Tests for Malaria. Journal of Clinical Microbiology, 2006, 44, 2773-2778.	3.9	155
80	Assessing the Genetic Diversity of the Aldolase Genes of Plasmodium falciparum and Plasmodium vivax and Its Potential Effect on Performance of Aldolase-Detecting Rapid Diagnostic Tests. Journal of Clinical Microbiology, 2006, 44, 4547-4549.	3.9	39
81	EFFICACY OF SULFADOXINE-PYRIMETHAMINE IN THE TREATMENT OF UNCOMPLICATED PLASMODIUM FALCIPARUM MALARIA IN EAST TIMOR. American Journal of Tropical Medicine and Hygiene, 2006, 74, 361-366.	1.4	4
82	DETECTION SENSITIVITY AND QUANTITATION OF PLASMODIUM FALCIPARUM VAR GENE TRANSCRIPTS BY REAL-TIME RT-PCR IN COMPARISON WITH CONVENTIONAL RT-PCR. American Journal of Tropical Medicine and Hygiene, 2006, 75, 212-218.	1.4	13
83	AMINO ACID MUTATIONS IN PLASMODIUM VIVAX DHFR AND DHPS FROM SEVERAL GEOGRAPHICAL REGIONS AND SUSCEPTIBILITY TO ANTIFOLATE DRUGS. American Journal of Tropical Medicine and Hygiene, 2006, 75, 617-621.	1.4	76
84	Detection sensitivity and quantitation of Plasmodium falciparum var gene transcripts by real-time RT-PCR in comparison with conventional RT-PCR. American Journal of Tropical Medicine and Hygiene, 2006, 75, 212-8.	1.4	11
85	Efficacy of sulfadoxine-pyrimethamine in the treatment of uncomplicated Plasmodium falciparum malaria in East Timor. American Journal of Tropical Medicine and Hygiene, 2006, 74, 361-6.	1.4	4
86	Amino acid mutations in Plasmodium vivax DHFR and DHPS from several geographical regions and susceptibility to antifolate drugs. American Journal of Tropical Medicine and Hygiene, 2006, 75, 617-21.	1.4	52
87	Genetic Diversity ofPlasmodium falciparumHistidineâ€Rich Protein 2 (PfHRP2) and Its Effect on the Performance of PfHRP2â€Based Rapid Diagnostic Tests. Journal of Infectious Diseases, 2005, 192, 870-877.	4.0	240
88	Origin and Dissemination of Chloroquine-Resistant Plasmodium falciparum with Mutant pfcrt Alleles in the Philippines. Antimicrobial Agents and Chemotherapy, 2005, 49, 2102-2105.	3.2	40
89	Limited Polymorphism in the Dihydropteroate Synthetase Gene (dhps) of Plasmodium vivax Isolates from Thailand. Antimicrobial Agents and Chemotherapy, 2005, 49, 4393-4395.	3.2	63
90	Evolution of Resistance to Sulfadoxine-Pyrimethamine in <i>Plasmodium falciparum</i> . Antimicrobial Agents and Chemotherapy, 2004, 48, 2116-2123.	3.2	73

Qin Cheng

#	Article	IF	CITATIONS
91	Sulfadoxine Resistance in Plasmodium vivax Is Associated with a Specific Amino Acid in Dihydropteroate Synthase at the Putative Sulfadoxine-Binding Site. Antimicrobial Agents and Chemotherapy, 2004, 48, 2214-2222.	3.2	100
92	Nitric Oxide Production and Nitric Oxide Synthase Activity in Malaria-Exposed Papua New Guinean Children and Adults Show Longitudinal Stability and No Association with Parasitemia. Infection and Immunity, 2004, 72, 6932-6938.	2.2	24
93	Modeling the Development of Acquired Clinical Immunity to Plasmodium falciparum Malaria. Infection and Immunity, 2004, 72, 6538-6545.	2.2	35
94	Switching rates of Plasmodium falciparum var genes: faster than we thought?. Trends in Parasitology, 2003, 19, 202-208.	3.3	38
95	Efficacy of chloroquine in the treatment of uncomplicated Plasmodium falciparum infection in East Timor, 2000. Acta Tropica, 2003, 88, 87-90.	2.0	7
96	pfcrt Allelic Types with Two Novel Amino Acid Mutations in Chloroquine-Resistant Plasmodium falciparum Isolates from the Philippines. Antimicrobial Agents and Chemotherapy, 2003, 47, 3500-3505.	3.2	101
97	Levels of Chloroquine Resistance inPlasmodium falciparumAre Determined by Loci Other thanpfcrtandpfmdr1. Journal of Infectious Diseases, 2002, 185, 405-406.	4.0	44
98	High diversity and rapid changeover of expressed var genes during the acute phase of Plasmodium falciparum infections in human volunteers. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10689-10694.	7.1	103
99	Mutations in Cytochrome b Resulting in Atovaquone Resistance Are Associated with Loss of Fitness in Plasmodium falciparum. Antimicrobial Agents and Chemotherapy, 2002, 46, 2435-2441.	3.2	53
100	Therapeutic Efficacies of Artesunate-Sulfadoxine-Pyrimethamine and Chloroquine-Sulfadoxine-Pyrimethamine in Vivax Malaria Pilot Studies: Relationship to Plasmodium vivax dhfr Mutations. Antimicrobial Agents and Chemotherapy, 2002, 46, 3947-3953.	3.2	111
101	Genetic diversity of the DBLα region in Plasmodium falciparum var genes among Asia-Pacific isolatesâ~†. Molecular and Biochemical Parasitology, 2002, 120, 117-126.	1.1	52
102	Pyrimethamine–sulfadoxine resistance in Plasmodium falciparum must be delayed in Africa. Trends in Parasitology, 2002, 18, 293.	3.3	11
103	Evaluation of the pyrogenic threshold for Plasmodium falciparum malaria in naive individuals American Journal of Tropical Medicine and Hygiene, 2002, 66, 467-473.	1.4	45
104	Short report: Molecular evaluation of the efficacy of chloroquine treatment of uncomplicated Plasmodium falciparum malaria in East Timor American Journal of Tropical Medicine and Hygiene, 2002, 67, 64-66.	1.4	9
105	Aldolase genes of Plasmodium species. Molecular and Biochemical Parasitology, 2001, 113, 327-330.	1.1	11
106	Sequence Polymorphisms inpfcrtAre Strongly Associated with Chloroquine Resistance inPlasmodium falciparum. Journal of Infectious Diseases, 2001, 183, 1543-1545.	4.0	56
107	Plasmodium vivax synonymous substitution frequencies, evolution and population structure deduced from diversity in AMA 1 and MSP 1 genes. Molecular and Biochemical Parasitology, 2000, 108, 53-66.	1.1	97
108	Sequence diversity in rodent malaria of the Pfs28 ookinete surface antigen homologs. Molecular and Biochemical Parasitology, 2000, 110, 429-434.	1.1	9

#	Article	IF	CITATIONS
109	Effect of vaccination with 3 recombinant asexual-stage malaria antigens on initial growth rates of Plasmodium falciparum in non-immune volunteers. Vaccine, 2000, 18, 1925-1931.	3.8	132
110	Mutations in Plasmodium falciparum Cytochrome b That Are Associated with Atovaquone Resistance Are Located at a Putative Drug-Binding Site. Antimicrobial Agents and Chemotherapy, 2000, 44, 2100-2108.	3.2	340
111	Research note Codon usage in Plasmodium vivax nuclear genes. International Journal for Parasitology, 1999, 29, 445-449.	3.1	9
112	stevor and rif are Plasmodium falciparum multicopy gene families which potentially encode variant antigens. Molecular and Biochemical Parasitology, 1998, 97, 161-176.	1.1	230
113	Evidence of cross-contamination among laboratory lines of Plasmodium berghei1Note: Nucleotide sequence data reported in this paper have been submitted to the Genbankâ"¢ data base with accession numbers U65085–65088.1. Molecular and Biochemical Parasitology, 1997, 84, 143-147.	1.1	15
114	Measurement of Plasmodium falciparum Growth Rates in Vivo: A Test of Malaria Vaccines. American Journal of Tropical Medicine and Hygiene, 1997, 57, 495-500.	1.4	148
115	Dimorphism of the C terminus of the Plasmodium vivax merozoite surface protein 1. Molecular and Biochemical Parasitology, 1995, 70, 217-219.	1.1	36
116	Sequence variation in the circumsporozoite protein gene of Plasmodium vivax appears to be regionally biased. Molecular and Biochemical Parasitology, 1994, 68, 45-52.	1.1	50
117	Plasmodium falciparum genetic diversity can be characterised using the polymorphic merozoite surface antigen 2 (MSA-2) gene as a single locus marker. Molecular and Biochemical Parasitology, 1994, 63, 203-212.	1.1	43
118	The dihydrofolate reductase domain of rodent malarias: point mutations and pyrimethamine resistance. Molecular and Biochemical Parasitology, 1994, 65, 361-363.	1.1	33
119	Sequence analysis of the apical membrane antigen I (AMA-1) of plasmodium vivax. Molecular and Biochemical Parasitology, 1994, 65, 183-187.	1.1	86
120	The 42-kilodalton rhoptry-associated protein of Plasmodium falciparum. Molecular and Biochemical Parasitology, 1992, 50, 139-149.	1.1	59
121	Identification of a commonPlasmodium epitope (CPE) recognised by a pan-specific inhibitory monoclonal antibody. Molecular and Biochemical Parasitology, 1991, 49, 73-82.	1.1	13