List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1329147/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional and phylogenetic diversity of an agricultural matrix avifauna: The role of habitat heterogeneity in Afrotropical farmland. Ecology and Evolution, 2022, 12, .	1.9	2
2	The influence of natural fire and cultural practices on island ecosystems: Insights from a 4,800Âyear record from Gran Canaria, Canary Islands. Journal of Biogeography, 2021, 48, 276-290.	3.0	7
3	Assessing tropical forest restoration after fire using birds as indicators: An afrotropical case study. Forest Ecology and Management, 2021, 483, 118765.	3.2	6
4	The Identification of Biodiversity Hotspots Using the Species–Area Relationship. , 2021, , 321-344.		5
5	Mathematical Expressions for the Species–Area Relationship and the Assumptions behind the Models. , 2021, , 157-184.		19
6	The Island Species–Area Relationship: Rosenzweig's Dinosaur Is Still Alive. , 2021, , 459-475.		0
7	Using Network Analysis to Explore the Role of Dispersal in Producing and Maintaining Island Species–Area Relationships. , 2021, , 368-398.		0
8	The Species–Area Relationship: Both General and Protean?. , 2021, , 3-19.		3
9	Effects of Holocene climate change, volcanism and mass migration on the ecosystem of a small, dry island (Brava, Cabo Verde). Journal of Biogeography, 2021, 48, 1392-1405.	3.0	4
10	Species–Area Relationships in Alien Species: Pattern and Process. , 2021, , 133-154.		20
11	The History of the Species–Area Relationship. , 2021, , 20-48.		22
12	Using the Species–Area Relationship to Predict Extinctions Resulting from Habitat Loss. , 2021, , 345-367.		4
13	Using Relict Species–Area Relationships to Estimate the Conservation Value of Reservoir Islands to Improve Environmental Impact Assessments of Dams. , 2021, , 417-437.		2
14	Determinants of the Shape of Species–Area Curves. , 2021, , 78-106.		4
15	On the Interface of Food Webs and Spatial Ecology: The Trophic Dimension of Species–Area Relationships. , 2021, , 289-318.		18
16	Functional and Phylogenetic Diversity–Area Relationships. , 2021, , 107-132.		3
17	Explaining Variation in Island Species–Area Relationship (ISAR) Model Parameters between Different Archipelago Types: Expanding a Global Model of ISARs. , 2021, , 51-77.		18
18	The human dimension of biodiversity changes on islands. Science, 2021, 372, 488-491.	12.6	81

#	Article	IF	CITATIONS
19	Effects of landâ€use change on avian taxonomic, functional and phylogenetic diversity in a tropical montane rainforest. Diversity and Distributions, 2021, 27, 1732-1746.	4.1	17
20	Evolutionary winners are ecological losers among oceanic island plants. Journal of Biogeography, 2021, 48, 2186-2198.	3.0	18
21	Anthropogenic transitions from forested to human-dominated landscapes in southern Macaronesia. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	17
22	Mycorrhizal types influence island biogeography of plants. Communications Biology, 2021, 4, 1128.	4.4	12
23	Monitoring a thermophilous woodland reforestation project in Tenerife, Canary Islands. Scientia Insularum Revista De Ciencias Naturales En Islas, 2021, 4, 27-43.	0.1	Ο
24	On the form of species–area relationships in habitat islands and true islands. Global Ecology and Biogeography, 2020, 29, 1094-1094.	5.8	2
25	Using multiple palaeoecological indicators to guide biodiversity conservation in tropical dry islands: The case of São Nicolau, Cabo Verde. Biological Conservation, 2020, 242, 108397.	4.1	11
26	Extension of the gambin model to multimodal species abundance distributions. Methods in Ecology and Evolution, 2019, 10, 432-437.	5.2	7
27	Humboldt's enigma: What causes global patterns of mountain biodiversity?. Science, 2019, 365, 1108-1113.	12.6	505
28	Building mountain biodiversity: Geological and evolutionary processes. Science, 2019, 365, 1114-1119.	12.6	415
29	Can additive beta diversity be reliably partitioned into nestedness and turnover components?. Clobal Ecology and Biogeography, 2019, 28, 1146-1154.	5.8	3
30	A global model of island species–area relationships. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12337-12342.	7.1	61
31	Assessing predicted isolation effects from the general dynamic model of island biogeography with an ecoâ€evolutionary model for plants. Journal of Biogeography, 2019, 46, 1569-1581.	3.0	21
32	Late Holocene environmental change and the anthropization of the highlands of Santo Antão Island, Cabo Verde. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 524, 101-117.	2.3	16
33	sars: an R package for fitting, evaluating and comparing species–area relationship models. Ecography, 2019, 42, 1446-1455.	4.5	64
34	Beyond the Last Glacial Maximum: Island endemism is best explained by longâ€lasting archipelago configurations. Global Ecology and Biogeography, 2019, 28, 184-197.	5.8	41
35	Functional traits of indigenous and exotic groundâ€dwelling arthropods show contrasting responses to landâ€use change in an oceanic island, Terceira, Azores. Diversity and Distributions, 2018, 24, 36-47.	4.1	36
36	Archipelagos and meta-archipelagos. Frontiers of Biogeography, 2018, 10, .	1.8	4

#	Article	IF	CITATIONS
37	Global Island Monitoring Scheme (GIMS): a proposal for the long-term coordinated survey and monitoring of native island forest biota. Biodiversity and Conservation, 2018, 27, 2567-2586.	2.6	72
38	Oceanic island biogeography through the lens of the general dynamic model: assessment and prospect. Biological Reviews, 2017, 92, 830-853.	10.4	106
39	A biogeographical perspective on species abundance distributions: recent advances and opportunities for future research. Journal of Biogeography, 2017, 44, 1705-1710.	3.0	23
40	Island biodiversity conservation needs palaeoecology. Nature Ecology and Evolution, 2017, 1, 181.	7.8	65
41	A roadmap for island biology: 50 fundamental questions after 50Âyears of <i>The Theory of Island Biogeography</i> . Journal of Biogeography, 2017, 44, 963-983.	3.0	167
42	Island biogeography: Taking the long view of natureâ \in Ms laboratories. Science, 2017, 357, .	12.6	384
43	Assessing the relative importance of isolated Ficus trees to insectivorous birds in an Indian human-modified tropical landscape. Biodiversity and Conservation, 2017, 26, 2803-2819.	2.6	7
44	Dispersal ability determines the scaling properties of species abundance distributions: a case study using arthropods from the Azores. Scientific Reports, 2017, 7, 3899.	3.3	25
45	Oceanic archipelagos: a perspective on the geodynamics and biogeography of the World's smallest biotic provinces. Frontiers of Biogeography, 2016, 8, .	1.8	7
46	Do biological traits drive geographical patterns in European amphibians?. Global Ecology and Biogeography, 2016, 25, 1228-1238.	5.8	18
47	The Importance of <i>Ficus</i> (Moraceae) Trees for Tropical Forest Restoration. Biotropica, 2016, 48, 413-419.	1.6	32
48	On the form of species–area relationships in habitat islands and true islands. Global Ecology and Biogeography, 2016, 25, 847-858.	5.8	123
49	The general dynamic model: towards a unified theory of island biogeography?. Global Ecology and Biogeography, 2016, 25, 805-816.	5.8	66
50	Transferring and implementing the general dynamic model of oceanic island biogeography at the scale of island fragments: the roles of geological age and topography in plant diversification in the Canaries. Journal of Biogeography, 2016, 43, 911-922.	3.0	18
51	Towards a glacialâ€sensitive model of island biogeography. Global Ecology and Biogeography, 2016, 25, 817-830.	5.8	95
52	Island species–area relationships and species accumulation curves are not equivalent: an analysis of habitat island datasets. Global Ecology and Biogeography, 2016, 25, 607-618.	5.8	46
53	Reconstructing Holocene vegetation on the island of Gran Canaria before and after human colonization. Holocene, 2016, 26, 113-125.	1.7	28
54	Oceanic archipelagos: a perspective on the geodynamics and biogeography of the World's smallest biotic provinces. Frontiers of Biogeography, 2016, 8, .	1.8	16

#	Article	IF	CITATIONS
55	New records and detailed distribution and abundance of selected arthropod species collected between 1999 and 2011 in Azorean native forests. Biodiversity Data Journal, 2016, 4, e10948.	0.8	12
56	Farewell Editorial. Journal of Biogeography, 2015, 42, 2253-2254.	3.0	3
57	Comparative phylogeography of endemic Azorean arthropods. BMC Evolutionary Biology, 2015, 15, 250.	3.2	6
58	Modern pollen rain in Canary Island ecosystems and its implications for the interpretation of fossil records. Review of Palaeobotany and Palynology, 2015, 214, 27-39.	1.5	28
59	Quantifying and interpreting nestedness in habitat islands: a synthetic analysis of multiple datasets. Diversity and Distributions, 2015, 21, 392-404.	4.1	62
60	Islands as model systems in ecology and evolution: prospects fifty years after MacArthurâ€Wilson. Ecology Letters, 2015, 18, 200-217.	6.4	356
61	Spatial and temporal variation in amphibian metacommunity structure in Chiapas, Mexico – ERRATUM. Journal of Tropical Ecology, 2015, 31, 199-200.	1.1	0
62	Drivers of extinction: the case of Azorean beetles. Biology Letters, 2015, 11, 20150273.	2.3	79
63	Isolated Ficus trees deliver dual conservation and development benefits in a rural landscape. Ambio, 2015, 44, 678-684.	5.5	8
64	Ecological traits reveal functional nestedness of bird communities in habitat islands: a global survey. Oikos, 2015, 124, 817-826.	2.7	24
65	REVIEW: On the species abundance distribution in applied ecology and biodiversity management. Journal of Applied Ecology, 2015, 52, 443-454.	4.0	128
66	Latitude, productivity and species richness. Global Ecology and Biogeography, 2015, 24, 107-117.	5.8	222
67	Are Protected Areas Required to Maintain Functional Diversity in Human-Modified Landscapes?. PLoS ONE, 2015, 10, e0123952.	2.5	10
68	Felling Ficus: The Cultural Status of Fig Trees in a Rural Assamese Community, India. Ethnobiology Letters, 2015, 6, 89-98.	0.5	3
69	Fitting and comparing competing models of the species abundance distribution: assessment and prospect. Frontiers of Biogeography, 2014, 6, .	1.8	44
70	Editorial: Developments in biogeography. Journal of Biogeography, 2014, 41, 1-5.	3.0	12
71	Functional biogeography of oceanic islands and the scaling of functional diversity in the Azores. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13709-13714.	7.1	103
72	Spatial and temporal variation in amphibian metacommunity structure in Chiapas, Mexico. Journal of Tropical Ecology, 2014, 30, 537-549.	1.1	10

#	Article	IF	CITATIONS
73	Thresholds and the species–area relationship: a synthetic analysis of habitat island datasets. Journal of Biogeography, 2014, 41, 1018-1028.	3.0	50
74	The gambin model provides a superior fit to species abundance distributions with a single free parameter: evidence, implementation and interpretation. Ecography, 2014, 37, 1002-1011.	4.5	42
75	Neutral theory and the species abundance distribution: recent developments and prospects for unifying niche and neutral perspectives. Ecology and Evolution, 2014, 4, 2263-2277.	1.9	105
76	The varied form of species–area relationships. Journal of Biogeography, 2014, 41, 209-210.	3.0	19
77	Multimodal species abundance distributions: a deconstruction approach reveals the processes behind the pattern. Oikos, 2014, 123, 533-544.	2.7	34
78	Nodeâ€based analysis of species distributions. Methods in Ecology and Evolution, 2014, 5, 1225-1235.	5.2	25
79	Habitat fragmentation and the species–area relationship: a focus on total species richness obscures the impact of habitat loss on habitat specialists. Diversity and Distributions, 2014, 20, 1136-1146.	4.1	111
80	Fitting and comparing competing models of the species abundance distribution: assessment and prospect. Frontiers of Biogeography, 2014, 6, .	1.8	13
81	Development of 28 polymorphic microsatellite markers for the endemic Azorean spider Sancus acoreensis (Araneae, Tetragnathidae). Conservation Genetics Resources, 2013, 5, 1133-1134.	0.8	5
82	The geographical distribution of life and the problem of regionalization: 100 years after Alfred Russel Wallace. Journal of Biogeography, 2013, 40, 2209-2214.	3.0	41
83	An Update of Wallace's Zoogeographic Regions of the World. Science, 2013, 339, 74-78.	12.6	1,037
84	Snails on oceanic islands: testing the general dynamic model of oceanic island biogeography using linear mixed effect models. Journal of Biogeography, 2013, 40, 117-130.	3.0	52
85	The ancient forests of <scp>L</scp> a <scp>G</scp> omera, <scp>C</scp> anary <scp>I</scp> slands, and their sensitivity to environmental change. Journal of Ecology, 2013, 101, 368-377.	4.0	62
86	Fine root dynamics along an elevational gradient in tropical Amazonian and Andean forests. Global Biogeochemical Cycles, 2013, 27, 252-264.	4.9	57
87	Integration of non-indigenous species within the interspecific abundance–occupancy relationship. Acta Oecologica, 2013, 48, 69-75.	1.1	20
88	Accounting for data heterogeneity in patterns of biodiversity: an application of linear mixed effect models to the oceanic island biogeography of sporeâ€producing plants. Ecography, 2013, 36, 904-913.	4.5	42
89	Response to Comment on "An Update of Wallace's Zoogeographic Regions of the World― Science, 2013, 341, 343-343.	12.6	15
90	The ecological biogeography of Amazonia. Frontiers of Biogeography, 2013, 5, .	1.8	3

#	Article	IF	CITATIONS
91	The Demise of the Golden Toad and the Creation of a Climate Change Icon Species. Conservation and Society, 2013, 11, 291.	0.8	2
92	Climate change and amphibian diversity patterns in Mexico. Biological Conservation, 2012, 150, 94-102.	4.1	58
93	Systemic range shift lags among a pollinator species assemblage following rapid climate change ¹ This article is part of a Special Issue entitled "Pollination biology research in Canada: Perspectives on a mutualism at different scalesâ€. Botany, 2012, 90, 587-597.	1.0	25
94	The island species–area relationship: biology and statistics. Journal of Biogeography, 2012, 39, 215-231.	3.0	313
95	The species–area relationship: an exploration of that â€~most general, yet protean pattern' ¹ . Journal of Biogeography, 2012, 39, 623-626.	3.0	37
96	Dripâ€tips are Associated with Intensity of Precipitation in the Amazon Rain Forest. Biotropica, 2012, 44, 728-737.	1.6	25
97	ET come home: potential evapotranspiration in geographical ecology. Global Ecology and Biogeography, 2011, 20, 1-18.	5.8	279
98	A reconstruction of Palaeo-Macaronesia, with particular reference to the long-term biogeography of the Atlantic island laurel forests. Journal of Biogeography, 2011, 38, 226-246.	3.0	298
99	In search of general models in evolutionary time and space. Journal of Biogeography, 2011, 38, 2041-2042.	3.0	2
100	The effects of land-use change on arthropod richness and abundance on Santa Maria Island (Azores): unmanaged plantations favour endemic beetles. Journal of Insect Conservation, 2011, 15, 505-522.	1.4	35
101	In the dragon's den: a response to the metaâ€analysis forum contributions. Ecology, 2010, 91, 2568-2571.	3.2	5
102	Beyond scarcity: citizen science programmes as useful tools for conservation biogeography. Diversity and Distributions, 2010, 16, 354-362.	4.1	405
103	Conservation biogeography – foundations, concepts and challenges. Diversity and Distributions, 2010, 16, 313-320.	4.1	175
104	Extinction debt on oceanic islands. Ecography, 2010, 33, 285-294.	4.5	114
105	Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Global Change Biology, 2010, 16, 3176-3192.	9.5	333
106	Are species–area relationships from entire archipelagos congruent with those of their constituent islands?. Global Ecology and Biogeography, 2010, 19, 527-540.	5.8	46
107	Are compound leaves an adaptation to seasonal drought or to rapid growth? Evidence from the Amazon rain forest. Global Ecology and Biogeography, 2010, 19, 852-862.	5.8	32
108	Metaâ€analyses and megaâ€mistakes: calling time on metaâ€analysis of the species richness–productivity relationship. Ecology, 2010, 91, 2522-2533.	3.2	185

#	Article	IF	CITATIONS
109	Spatial trends in leaf size of Amazonian rainforest trees. Biogeosciences, 2009, 6, 1563-1576.	3.3	31
110	The longâ€ŧerm ecology of the lost forests of La Laguna, Tenerife (Canary Islands). Journal of Biogeography, 2009, 36, 499-514.	3.0	101
111	Southeast Alaska marine ecology and biogeography. Journal of Biogeography, 2009, 36, 385-385.	3.0	0
112	Darwin and biogeography. Journal of Biogeography, 2009, 36, 1009-1010.	3.0	0
113	The first humans, the second orangutan and the third chimpanzee. Journal of Biogeography, 2009, 36, 1821-1822.	3.0	1
114	A General Dynamic Theory of Oceanic Island Biogeography: Extending the MacArthur- Wilson Theory to Accommodate the Rise and Fall of Volcanic Islands. , 2009, , 88-115.		34
115	Exposure of European biodiversity to changes in human-induced pressures. Environmental Science and Policy, 2008, 11, 38-45.	4.9	40
116	Measurements of area and the (island) species–area relationship: new directions for an old pattern. Oikos, 2008, 117, 1555-1559.	2.7	51
117	Evolutionary species–area curves as revealed by singleâ€island endemics: insights for the interâ€provincial species–area relationship. Ecography, 2008, 31, 401-407.	4.5	63
118	The Canaries: an important biogeographical meeting place. Journal of Biogeography, 2008, 35, 379-387.	3.0	63
119	ORIGINAL ARTICLE: A general dynamic theory of oceanic island biogeography. Journal of Biogeography, 2008, 35, 977-994.	3.0	589
120	Agroforestry: a refuge for tropical biodiversity?. Trends in Ecology and Evolution, 2008, 23, 261-267.	8.7	540
121	Journal review and gender equality: a critical comment on Budden et al Trends in Ecology and Evolution, 2008, 23, 478-479.	8.7	31
122	Evolutionary species–area curves as revealed by single-island endemics: insights for the inter-provincial species–area relationship. Ecography, 2008, .	4.5	1
123	The island immaturity - speciation pulse model of island evolution: an alternative to the "diversity begets diversity―model. Ecography, 2007, 30, 321-327.	4.5	97
124	Testing the impact of climate variability on European plant diversity: 320�000�years of water?energy dynamics and its long-term influence on plant taxonomic richness. Ecology Letters, 2007, 10, 673-679.	6.4	43
125	data for five taxa. Global Ecology and Biogeography, 2007, 16, 76-89.	5.8	198
126	The odd man out? Might climate explain the lower tree αâ€diversity of African rain forests relative to Amazonian rain forests?. Journal of Ecology, 2007, 95, 1058-1071.	4.0	115

#	Article	IF	CITATIONS
127	How resilient are Andean montane forest bird communities to habitat degradation?. Biodiversity and Conservation, 2007, 16, 1131-1159.	2.6	54
128	Unifying and distinguishing diversity ordering methods for comparing communities. Population Ecology, 2007, 49, 89-100.	1.2	34
129	How resilient are Andean montane forest bird communities to habitat degradation?. Topics in Biodiversity and Conservation, 2006, , 305-333.	1.0	2
130	Using spatial heterogeneity to extrapolate species richness: a new method tested on Ecuadorian cloud forest birds. Journal of Applied Ecology, 2006, 43, 189-198.	4.0	22
131	Island species-energy theory. Journal of Biogeography, 2006, 33, 11-12.	3.0	25
132	How well do Important Bird Areas represent species and minimize conservation conflict in the tropical Andes?. Diversity and Distributions, 2006, 12, 205-214.	4.1	43
133	Progress in invasive plants research. Progress in Physical Geography, 2006, 30, 25-46.	3.2	58
134	data for five taxa. Global Ecology and Biogeography, 2006, .	5.8	6
135	GLOBAL MODELS FOR PREDICTING WOODY PLANT RICHNESS FROM CLIMATE: DEVELOPMENT AND EVALUATION. Ecology, 2005, 86, 2263-2277.	3.2	139
136	Mapping tropical forest structure in southeastern Madagascar using remote sensing and artificial neural networks. Remote Sensing of Environment, 2005, 94, 491-507.	11.0	138
137	Reducing uncertainty in projections of extinction risk from climate change. Global Ecology and Biogeography, 2005, 14, 529-538.	5.8	420
138	Bird community responses to habitat fragmentation: how consistent are they across landscapes?. Journal of Biogeography, 2005, 32, 1353-1370.	3.0	121
139	Conservation Biogeography: assessment and prospect. Diversity and Distributions, 2005, 11, 3-23.	4.1	919
140	Tree Structure and Diversity in Human-Impacted Littoral Forests, Madagascar. Environmental Management, 2005, 35, 779-798.	2.7	22
141	The importance of littoral forest remnants for indigenous bird conservation in southeastern Madagascar. Biodiversity and Conservation, 2005, 14, 523-545.	2.6	18
142	Scientists and the media: the struggle for legitimacy in climate change and conservation science. Interdisciplinary Science Reviews, 2005, 30, 231-240.	1.4	88
143	Avifaunal responses to habitat fragmentation in the threatened littoral forests of south-eastern Madagascar. Journal of Biogeography, 2004, 31, 1791-1807.	3.0	51
144	Rapid assessment in conservation research: a critique of avifaunal assessment techniques illustrated by Ecuadorian and Madagascan case study data. Diversity and Distributions, 2004, 10, 55-63.	4.1	24

ROBERT J WHITTAKER

#	Article	IF	CITATIONS
145	Uncertainty in predictions of extinction risk. Nature, 2004, 430, 34-34.	27.8	216
146	Dangers of crying wolf over risk of extinctions. Nature, 2004, 428, 799-799.	27.8	39
147	Future Climate Change of the Subtropical North Atlantic: Implications for the Cloud Forests of Tenerife. Climatic Change, 2004, 65, 103-123.	3.6	93
148	Habitat structure and proximity to forest edge affect the abundance and distribution of forest-dependent birds in tropical coastal forests of southeastern Madagascar. Biological Conservation, 2004, 120, 311-311.	4.1	0
149	Habitat structure and proximity to forest edge affect the abundance and distribution of forest-dependent birds in tropical coastal forests of southeastern Madagascar. Biological Conservation, 2004, 120, 311-327.	4.1	153
150	The irreversible cattle-driven transformation of a seasonally flooded Australian savanna. Journal of Biogeography, 2003, 30, 783-802.	3.0	98
151	WHAT IS THE OBSERVED RELATIONSHIP BETWEEN SPECIES RICHNESS AND PRODUCTIVITY? COMMENT. Ecology, 2003, 84, 3384-3390.	3.2	129
152	ECOLOGY: Enhanced: Species DiversityScale Matters. Science, 2002, 295, 1245-1248.	12.6	449
153	Ecoregions in Context: a Critique with Special Reference to Indonesia. Conservation Biology, 2002, 16, 42-57.	4.7	51
154	Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography, 2001, 28, 453-470.	3.0	1,221
155	Wrong in interesting ways. Journal of Biogeography, 2001, 28, 1441-1442.	3.0	0
156	Wrong in interesting ways. MacArthur, R. H. & Wilson, E. O. (1967: reprinted with new preface by E. O.) Tj ETQq University Press, Princeton, NJ, USA. xv +203 pp., figs, tables, index. Paperback: Price f12.95, US\$19.95. ISBN 0-691-08836-5 Journal of Biogeography 2001 28, 1441-1442	0 0 rgBT 3.0	/Overlock 10 1
157	Scale, succession and complexity in island biogeography: are we asking the right questions?. Global Ecology and Biogeography, 2000, 9, 75-85.	5.8	94
158	How to go extinct: lessons from the lost plants of Krakatau. Journal of Biogeography, 2000, 27, 1049-1064.	3.0	35
159	Tree species richness modelling: an approach of global applicability?. Oikos, 2000, 89, 399-402.	2.7	50
160	Climatic gradients in woody plant (tree and shrub) diversity: water-energy dynamics, residual variation, and topography. Oikos, 2000, 89, 588-600.	2.7	244
161	PALEOECOLOGY:The Refugial Debate. Science, 2000, 287, 1406-1407.	12.6	226

1

#	Article	IF	CITATIONS
163	Old World fruit bats can be long–distance seed dispersers through extended retention of viable seeds in the gut. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 219-223.	2.6	169
164	Changing the surface of our planet - results from studies of the global ecosystem. Global Ecology and Biogeography, 1999, 8, 363-365.	5.8	4
165	Scaling, energetics and diversity. Nature, 1999, 401, 865-866.	27.8	29
166	Interesting times on Krakatau: stand dynamics in the 1990s. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999, 354, 1857-1867.	4.0	25
167	Title is missing!. Biogeochemistry, 1998, 40, 37-55.	3.5	97
168	Population Persistence, Pollination Mutualisms, and Figs in Fragmented Tropical Landscapes. Conservation Biology, 1998, 12, 1416-1420.	4.7	14
169	Stand Biomass and Tree Mortality from Permanent Forest Plots on Krakatau, Indonesia, 1989-19951. Biotropica, 1998, 30, 519-529.	1.6	4
170	Climate and woody plant diversity in southern Africa: relationships at species, genus and family levels. Ecography, 1998, 21, 495-509.	4.5	106
171	Population Persistence, Pollination Mutualisms, and Figs in Fragmented Tropical Landscapes. Conservation Biology, 1998, 12, 1416-1420.	4.7	17
172	Krakatau: the destruction and reassembly of an island ecosystem. Trends in Ecology and Evolution, 1997, 12, 41.	8.7	0
173	The rebuilding of an isolated rain forestassemblage: how disharmonicis the flora of Krakatau?. Biodiversity and Conservation, 1997, 6, 1671-1696.	2.6	93
174	Ecological Lessons from Oceanic Islands. Biodiversity Letters, 1996, 3, 67.	0.5	0
175	Surface and Buried Seed Banks from Krakatau, Indonesia: Implications for the Sterilization Hypothesis. Biotropica, 1995, 27, 346.	1.6	26
176	Colonization and Succession on Krakatau: An Analysis of the Guild of Vining Plants. Biotropica, 1995, 27, 355.	1.6	22
177	Disturbed island ecology. Trends in Ecology and Evolution, 1995, 10, 421-425.	8.7	71
178	Assembly Rules Demonstrated in a Saltmarsh Community. Journal of Ecology, 1995, 83, 801.	4.0	92
179	The Role of Frugivorous Bats and Birds in the Rebuilding of a Tropical Forest Ecosystem, Krakatau, Indonesia. Journal of Biogeography, 1994, 21, 245.	3.0	167
180	Dispersal, fruit utilization and seed predation of Dysoxylum gaudichaudianum in early successional rainforest, Krakatau, Indonesia. Journal of Tropical Ecology, 1994, 10, 167-181.	1.1	40

#	Article	IF	CITATIONS
181	Structure in Re-Building Insular Ecosystems: An Empirically Derived Model. Oikos, 1994, 69, 524.	2.7	34
182	Anak Krakatau and old Krakatau: a reply. Geo Journal, 1993, 29, 417-420.	3.1	4
183	Non-Equilibration in Island Theory of Krakatau. Journal of Biogeography, 1993, 20, 453.	3.0	30
184	Relationships Between the Crown Condition of Sitka and Norway Spruce and the Environment in Great Britain: An Exploratory Analysis. Journal of Applied Ecology, 1993, 30, 341.	4.0	16
185	Plant population patterns in a glacier foreland succession: pioneer herbs and later-colonizing shrubs. Ecography, 1993, 16, 117-136.	4.5	62
186	Ecological aspects of plant colonisation of the Krakatau Islands. Geo Journal, 1992, 28, 201.	3.1	38
187	Anak Krakatau's vegetation and flora circa 1991, with observations on a decade of development and change. Geo Journal, 1992, 28, 233.	3.1	82
188	Krakatau: Colonization Patterns and Hierarchies. Journal of Biogeography, 1991, 18, 341.	3.0	78
189	The Vegetation of the Storbreen Gletschervorfeld, Jotunheimen, Norway. IV. Short-Term Vegetation Change. Journal of Biogeography, 1991, 18, 41.	3.0	41
190	A Revision of Estimates of Bird Colonization on Krakatau. Journal of Biogeography, 1991, 18, 585.	3.0	1
191	The use of mineral magnetic analyses as an aid in investigating the recent volcanic disturbance history of the Krakatau Islands, Indonesia. Holocene, 1991, 1, 262-268.	1.7	6
192	Plant Recolonization and Vegetation Succession on the Krakatau Islands, Indonesia. Ecological Monographs, 1989, 59, 59-123.	5.4	266
193	The Vegetation of the Storbreen Gletschervorfeld, Jotunheimen, Norway. III. Vegetation-Environment Relationships. Journal of Biogeography, 1989, 16, 413.	3.0	33
194	An Application of Detrended Correspondence Analysis and Non-Metric Multidimensional Scaling to the Identification and Analysis of Environmental Factor Complexes and Vegetation Structures. Journal of Ecology, 1987, 75, 363.	4.0	50
195	Computing aspects of a large geographic information system for the European Community. International Journal of Geographical Information Science, 1987, 1, 77-87.	4.8	8
196	Vegetation Succession on the Storbreen Glacier Foreland, Jotunheimen, Norway: A Review. Arctic and Alpine Research, 1987, 19, 385.	1.3	133
197	Krakatau 1883 to 1983. Progress in Physical Geography, 1984, 8, 61-81.	3.2	15
198	Reconstructing Holocene vegetation on the island of Gran Canaria before and after human		1

colonization., 0, .

#	Article	IF	CITATIONS
199	Deterministic assembly and anthropogenic extinctions drive convergence of island bird communities. Global Ecology and Biogeography, 0, , .	5.8	7