
C Johan Lissenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1328592/publications.pdf Version: 2024-02-01

C IOHAN LISSENBERC

#	Article	IF	CITATIONS
1	Empirical and experimental constraints on Fe-Ti oxide-melt titanium isotope fractionation factors. Geochimica Et Cosmochimica Acta, 2022, 326, 253-272.	3.9	13
2	Hydrothermal troctolite alteration at 300 and 400°C – Insights from flexible Au-reaction cell batch experimental investigations. American Mineralogist, 2021, , .	1.9	0
3	Magma Reservoir Formation and Evolution at a Slow-Spreading Center (Atlantis Bank, Southwest) Tj ETQq1 1 0.	784314 rg 1.8	gBT_/Overlock 21
4	Early-Stage Melt-Rock Reaction in a Cooling Crystal Mush Beneath a Slow-Spreading Mid-Ocean Ridge (IODP Hole U1473A, Atlantis Bank, Southwest Indian Ridge). Frontiers in Earth Science, 2020, 8, .	1.8	19
5	Melt chemistry and redox conditions control titanium isotope fractionation during magmatic differentiation. Geochimica Et Cosmochimica Acta, 2020, 282, 38-54.	3.9	41
6	Deep roots for mid-ocean-ridge volcanoes revealed by plagioclase-hosted melt inclusions. Nature, 2019, 572, 235-239.	27.8	27
7	Reaction Between Midâ€Ocean Ridge Basalt and Lower Oceanic Crust: An Experimental Study. Geochemistry, Geophysics, Geosystems, 2019, 20, 4390-4407.	2.5	33
8	The significance of plagioclase textures in mid-ocean ridge basalt (Gakkel Ridge, Arctic Ocean). Contributions To Mineralogy and Petrology, 2019, 174, 49.	3.1	40
9	Highly heterogeneous depleted mantle recorded in the lower oceanic crust. Nature Geoscience, 2019, 12, 482-486.	12.9	42
10	Consequences of a crystal mush-dominated magma plumbing system: a mid-ocean ridge perspective. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180014.	3.4	52
11	Evidence for a Moist to Wet Source Transition Throughout the Omanâ€UAE Ophiolite, and Implications for the Geodynamic History. Geochemistry, Geophysics, Geosystems, 2019, 20, 651-672.	2.5	7
12	Emplacement and Highâ€Temperature Evolution of Gabbros of the 16.5°N Oceanic Core Complexes (Midâ€Atlantic Ridge): Insights Into the Compositional Variability of the Lower Oceanic Crust. Geochemistry, Geophysics, Geosystems, 2019, 20, 46-66.	2.5	19
13	Formation of fast-spreading lower oceanic crust as revealed by a new Mg–REE coupled geospeedometer. Earth and Planetary Science Letters, 2018, 487, 165-178.	4.4	35
14	Caveats and challenges in geospeedometry: A reply to Faak et al.'s critique of the Mg–REE coupled geospeedometry. Earth and Planetary Science Letters, 2018, 502, 287-290.	4.4	4
15	Partial Melting of Lower Oceanic Crust Gabbro: Constraints From Poikilitic Clinopyroxene Primocrysts. Frontiers in Earth Science, 2018, 6, .	1.8	33
16	In situ Sr Isotope Compositions of Plagioclase from a Complete Stratigraphic Profile of the Bushveld Complex, South Africa: Evidence for Extensive Magma Mixing and Percolation. Journal of Petrology, 2017, 58, 2285-2308.	2.8	26
17	A mineral and cumulate perspective to magma differentiation at Nisyros volcano, Aegean arc. Contributions To Mineralogy and Petrology, 2017, 172, 1.	3.1	29
18	Crystallization depth beneath an oceanic detachment fault (ODP Hole 923A, Midâ€Atlantic Ridge). Geochemistry, Geophysics, Geosystems, 2016, 17, 162-180.	2.5	5

C JOHAN LISSENBERG

#	Article	IF	CITATIONS
19	Characterization of the in situ magnetic architecture of oceanic crust (Hess Deep) using nearâ€source vector magnetic data. Journal of Geophysical Research: Solid Earth, 2016, 121, 4130-4146.	3.4	10
20	A Reactive Porous Flow Control on Mid-ocean Ridge Magmatic Evolution. Journal of Petrology, 2016, 57, 2195-2220.	2.8	118
21	Uâ€₽b dating of interspersed gabbroic magmatism and hydrothermal metamorphism during lower crustal accretion, Vema lithospheric section, Midâ€Atlantic Ridge. Journal of Geophysical Research: Solid Earth, 2015, 120, 2093-2118.	3.4	11
22	The geochemical effects of olivine slurry replenishment and dolostone assimilation in the plumbing system of the Franklin Large Igneous Province, Victoria Island, Arctic Canada. Contributions To Mineralogy and Petrology, 2015, 169, 1.	3.1	11
23	Sulfide Immiscibility Induced by Wall-Rock Assimilation in a Fault-Guided Basaltic Feeder System, Franklin Large Igneous Province, Victoria Island (Arctic Canada). Economic Geology, 2015, 110, 1697-1717.	3.8	19
24	Olivine Slurry Replenishment and the Development of Igneous Layering in a Franklin Sill, Victoria Island, Arctic Canada. Journal of Petrology, 2015, 56, 83-112.	2.8	15
25	Hydrogen incorporation and charge balance in natural zircon. Geochimica Et Cosmochimica Acta, 2014, 141, 472-486.	3.9	54
26	Pervasive reactive melt migration through fast-spreading lower oceanic crust (Hess Deep, equatorial) Tj ETQq0	0 0 rgBT /C 494	overlock 10 T 149k 10 T
27	"Moist MORB" axial magmatism in the Oman ophiolite: The evidence against a mid-ocean ridge origin. Geology, 2013, 41, 459-462.	4.4	152
28	Protracted timescales of lower crustal growth at the fast-spreading East Pacific Rise. Nature Geoscience, 2012, 5, 275-278.	12.9	56
29	Mantle Melting, Melt Transport, and Delivery Beneath a Slow-Spreading Ridge: The Paleo-MAR from 23Â15'N to 23Â45'N. Journal of Petrology, 2010, 51, 425-467.	2.8	133
30	Zircon Dating of Oceanic Crustal Accretion. Science, 2009, 323, 1048-1050.	12.6	88
31	Dynamics of accretion of arc and backarc crust to continental margins: Inferences from the Annieopsquotch accretionary tract, Newfoundland Appalachians. Tectonophysics, 2009, 479, 150-164.	2.2	43
32	Melt–rock reaction in the lower oceanic crust and its implications for the genesis of mid-ocean ridge basalt. Earth and Planetary Science Letters, 2008, 271, 311-325.	4.4	160
33	Feedback between deformation and magmatism in the Lloyds River Fault Zone: An example of episodic fault reactivation in an accretionary setting, Newfoundland Appalachians. Tectonics, 2006, 25, n/a-n/a.	2.8	12
34	Spatial, temporal and geochemical characteristics of Silurian collision-zone magmatism, Newfoundland Appalachians: An example of a rapidly evolving magmatic system related to slab break-off. Lithos, 2006, 89, 377-404.	1.4	172
35	Lower to Middle Ordovician evolution of peri-Laurentian arc and backarc complexes in lapetus: Constraints from the Annieopsquotch accretionary tract, central Newfoundland. Bulletin of the Geological Society of America, 2006, 118, 324-342.	3.3	57
36	Assembly of the Annieopsquotch Accretionary Tract, Newfoundland Appalachians: Age and Geodynamic Constraints from Synâ€Kinematic Intrusions. Journal of Geology, 2005, 113, 553-570.	1.4	38

#	Article	IF	CITATIONS
37	Geochemical constraints on the origin of the Annieopsquotch ophiolite belt, Newfoundland Appalachians. Bulletin of the Geological Society of America, 2005, 117, 1413.	3.3	31
38	The structure and geochemistry of the gabbro zone of the Annieopsquotch ophiolite, Newfoundland: implications for lower crustal accretion at spreading ridges. Earth and Planetary Science Letters, 2004, 229, 105-123.	4.4	47

4