Lorand Kelemen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1327581/publications.pdf

Version: 2024-02-01

759233 713466 22 589 12 21 h-index citations g-index papers 23 23 23 851 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Three-dimensional femtosecond laser processing for lab-on-a-chip applications. Nanophotonics, 2018, 7, 613-634.	6.0	134
2	Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms. Optics Express, 2014, 22, 24217.	3.4	96
3	Integrated optical motor. Applied Optics, 2006, 45, 2777.	2.1	65
4	Light sailboats: Laser driven autonomous microrobots. Applied Physics Letters, 2012, 101, 041111.	3. 3	46
5	Aminosilane-based functionalization of two-photon polymerized 3D SU-8 microstructures. European Polymer Journal, 2012, 48, 1745-1754.	5.4	35
6	Direct writing of optical microresonators in a lab-on-a-chip for label-free biosensing. Lab on A Chip, 2019, 19, 1985-1990.	6.0	34
7	Surface-modified complex SU-8 microstructures for indirect optical manipulation of single cells. Biomedical Optics Express, 2016, 7, 45.	2.9	32
8	Multiview microscopy of single cells through microstructure-based indirect optical manipulation. Biomedical Optics Express, 2020, 11, 945.	2.9	21
9	Optically Trapped Surface-Enhanced Raman Probes Prepared by Silver Photoreduction to 3D Microstructures. Langmuir, 2015, 31, 10087-10093.	3. 5	17
10	Single-Cell Elasticity Measurement with an Optically Actuated Microrobot. Micromachines, 2020, 11, 882.	2.9	17
11	3D Biomimetic Chips for Cancer Cell Migration in Nanometer-Sized Spaces Using "Ship-in-a-Bottle― Femtosecond Laser Processing. ACS Applied Bio Materials, 2018, 1, 1667-1676.	4.6	15
12	Nearly Aberration-Free Multiphoton Polymerization into Thick Photoresist Layers. Micromachines, 2017, 8, 219.	2.9	14
13	Insights into graphene oxide interaction with human serum albumin in isolated state and in blood plasma. International Journal of Biological Macromolecules, 2021, 175, 19-29.	7.5	13
14	Streptococcal antigen I/II binds to extracellular proteins through intermolecular β-sheets. FEBS Letters, 2004, 566, 190-194.	2.8	12
15	DIC image reconstruction using an energy minimization framework to visualize optical path length distribution. Scientific Reports, 2016, 6, 30420.	3.3	12
16	A Triple Combination of Targeting Ligands Increases the Penetration of Nanoparticles across a Blood-Brain Barrier Culture Model. Pharmaceutics, 2022, 14, 86.	4.5	8
17	Optically Manipulated Microtools to Measure Adhesion of the Nanoparticle-Targeting Ligand Glutathione to Brain Endothelial Cells. ACS Applied Materials & Samp; Interfaces, 2021, 13, 39018-39029.	8.0	5
18	Bending dynamics of viscoelastic photopolymer nanowires. Applied Physics Letters, 2020, 117, .	3.3	4

#	Article	IF	CITATION
19	Modulation of the internal structure and surface properties of natural and synthetic polymer matrices by graphene oxide doping. Polymers for Advanced Technologies, 2020, 31, 1562-1570.	3.2	3
20	Assessing the Viscoelasticity of Photopolymer Nanowires Using a Three-Parameter Solid Model for Bending Recovery Motion. Nanomaterials, 2021, 11, 2961.	4.1	3
21	Power Spectral Density Analysis of Nanowire-Anchored Fluctuating Microbead Reveals a Double Lorentzian Distribution. Mathematics, 2021, 9, 1748.	2.2	2
22	Contributory presentations/posters. Journal of Biosciences, 1999, 24, 33-198.	1.1	0