Lianming Tong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1327175/publications.pdf

Version: 2024-02-01

97 papers 5,111 citations

71102 41 h-index 70 g-index

98 all docs 98 docs citations 98 times ranked 7474 citing authors

#	Article	IF	CITATIONS
1	Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature, 2017, 543, 234-238.	27.8	317
2	Optical Anisotropy of Black Phosphorus in the Visible Regime. Journal of the American Chemical Society, 2016, 138, 300-305.	13.7	273
3	Alignment, Rotation, and Spinning of Single Plasmonic Nanoparticles and Nanowires Using Polarization Dependent Optical Forces. Nano Letters, 2010, 10, 268-273.	9.1	244
4	Synthesis of Hierarchical Graphdiyne-Based Architecture for Efficient Solar Steam Generation. Chemistry of Materials, 2017, 29, 5777-5781.	6.7	206
5	Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy. Science Advances, 2018, 4, eaat6378.	10.3	198
6	Laser Trapping of Colloidal Metal Nanoparticles. ACS Nano, 2015, 9, 3453-3469.	14.6	193
7	Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: from self-assembled arrays to individual gold nanoparticles. Chemical Society Reviews, 2011, 40, 1296-1304.	38.1	185
8	Recent Advances in Plasmonic Sensors. Sensors, 2014, 14, 7959-7973.	3.8	182
9	Enhanced Raman Scattering on In-Plane Anisotropic Layered Materials. Journal of the American Chemical Society, 2015, 137, 15511-15517.	13.7	122
10	Graphene-Based Enhanced Raman Scattering toward Analytical Applications. Chemistry of Materials, 2016, 28, 6426-6435.	6.7	120
11	Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis. Lab on A Chip, 2009, 9, 193-195.	6.0	118
12	Raman Spectra and Corresponding Strain Effects in Graphyne and Graphdiyne. Journal of Physical Chemistry C, 2016, 120, 10605-10613.	3.1	116
13	Architecture of βâ€Graphdiyneâ€Containing Thin Film Using Modified Glaser–Hay Coupling Reaction for Enhanced Photocatalytic Property of TiO ₂ . Advanced Materials, 2017, 29, 1700421.	21.0	115
14	Atomic Pd on Graphdiyne/Graphene Heterostructure as Efficient Catalyst for Aromatic Nitroreduction. Advanced Functional Materials, 2019, 29, 1905423.	14.9	112
15	Synthesis of Ultrathin Graphdiyne Film Using a Surface Template. ACS Applied Materials & Samp; Interfaces, 2019, 11, 2632-2637.	8.0	103
16	Nanogaps for SERS applications. MRS Bulletin, 2014, 39, 163-168.	3.5	99
17	Hetero-site nucleation for growing twisted bilayer graphene with a wide range of twist angles. Nature Communications, 2021, 12, 2391.	12.8	92
18	Surface-Enhanced Raman Scattering ofp-Aminothiophenol on a Au(core)/Cu(shell) Nanoparticle Assembly. ChemPhysChem, 2005, 6, 913-918.	2.1	82

#	Article	IF	CITATIONS
19	Plasmonic Efficiency Enhancement of High Performance Organic Solar Cells with a Nanostructured Rear Electrode. Advanced Energy Materials, 2013, 3, 145-150.	19.5	76
20	Ultrasensitive Size-Selection of Plasmonic Nanoparticles by Fano Interference Optical Force. ACS Nano, 2014, 8, 701-708.	14.6	75
21	Fast Growth of Strain-Free AlN on Graphene-Buffered Sapphire. Journal of the American Chemical Society, 2018, 140, 11935-11941.	13.7	75
22	Anomalous Polarized Raman Scattering and Large Circular Intensity Differential in Layered Triclinic ReS ₂ . ACS Nano, 2017, 11, 10366-10372.	14.6	74
23	Diameter-Specific Growth of Semiconducting SWNT Arrays Using Uniform Mo2C Solid Catalyst. Journal of the American Chemical Society, 2015, 137, 8904-8907.	13.7	71
24	Spotting the differences in two-dimensional materials $\hat{a}\in$ " the Raman scattering perspective. Chemical Society Reviews, 2018, 47, 3217-3240.	38.1	71
25	Application of chemical vapor–deposited monolayer ReSe2 in the electrocatalytic hydrogen evolution reaction. Nano Research, 2018, 11, 1787-1797.	10.4	71
26	Template Synthesis of an Ultrathin \hat{l}^2 -Graphdiyne-Like Film Using the Eglinton Coupling Reaction. ACS Applied Materials & Samp; Interfaces, 2019, 11, 2734-2739.	8.0	69
27	Inâ€Plane Optical Anisotropy of Lowâ€Symmetry 2D GeSe. Advanced Optical Materials, 2019, 7, 1801311.	7.3	68
28	Highly Efficient Photothermal Conversion and Water Transport during Solar Evaporation Enabled by Amorphous Hollow Multishelled Nanocomposites. Advanced Materials, 2022, 34, e2107400.	21.0	68
29	Scalable and ultrafast epitaxial growth of single-crystal graphene wafers for electrically tunable liquid-crystal microlens arrays. Science Bulletin, 2019, 64, 659-668.	9.0	66
30	Single Gold-Nanoparticle-Enhanced Raman Scattering of Individual Single-Walled Carbon Nanotubes via Atomic Force Microscope Manipulation. Journal of Physical Chemistry C, 2008, 112, 7119-7123.	3.1	59
31	Direct synthesis and in situ characterization of monolayer parallelogrammic rhenium diselenide on gold foil. Communications Chemistry, 2018, $1,\dots$	4.5	58
32	Birefringenceâ€Directed Raman Selection Rules in 2D Black Phosphorus Crystals. Small, 2016, 12, 2627-2633.	10.0	57
33	Graphdiyne Filter for Decontaminating Lead″onâ€Polluted Water. Advanced Electronic Materials, 2017, 3, 1700122.	5.1	56
34	Graphdiyne/Graphene/Graphdiyne Sandwiched Carbonaceous Anode for Potassium-Ion Batteries. ACS Nano, 2022, 16, 3163-3172.	14.6	56
35	Raman Signatures of Broken Inversion Symmetry and Inâ€Plane Anisotropy in Typeâ€H Weyl Semimetal Candidate TalrTe ₄ . Advanced Materials, 2018, 30, e1706402.	21.0	54
36	Bridging the Gap between Reality and Ideality of Graphdiyne: The Advances of Synthetic Methodology. CheM, 2020, 6, 1933-1951.	11.7	54

#	Article	IF	CITATIONS
37	Catalystâ€Free Synthesis of Fewâ€Layer Graphdiyne Using a Microwaveâ€Induced Temperature Gradient at a Solid/Liquid Interface. Advanced Functional Materials, 2020, 30, 2001396.	14.9	54
38	Kinetically Controlled Pt Deposition onto Self-Assembled Au Colloids:Â Preparation of Au (Core)â^'Pt (Shell) Nanoparticle Assemblies. Chemistry of Materials, 2004, 16, 3239-3245.	6.7	50
39	Plasmon Hybridization Reveals the Interaction between Individual Colloidal Gold Nanoparticles Confined in an Optical Potential Well. Nano Letters, 2011, 11, 4505-4508.	9.1	46
40	Anisotropic Strain Relaxation of Graphene by Corrugation on Copper Crystal Surfaces. Small, 2018, 14, e1800725.	10.0	46
41	Synthesis of Hydrogenâ€Substituted Graphyne Film for Lithium–Sulfur Battery Applications. Small, 2019, 15, 1805344.	10.0	42
42	In Situ Quantitative Graphene-Based Surface-Enhanced Raman Spectroscopy. Small Methods, 2017, 1, 1700126.	8.6	41
43	Reproducible Patterning of Single Au Nanoparticles on Silicon Substrates by Scanning Probe Oxidation and Self-Assembly. Journal of Physical Chemistry B, 2005, 109, 2657-2665.	2.6	37
44	Lattice Vibration and Raman Scattering in Anisotropic Black Phosphorus Crystals. Small Methods, 2018, 2, 1700409.	8.6	37
45	Solar Transparent Radiators by Optical Nanoantennas. Nano Letters, 2017, 17, 6766-6772.	9.1	35
46	Synthesis of wafer-scale ultrathin graphdiyne for flexible optoelectronic memory with over 256 storage levels. CheM, 2021, 7, 1284-1296.	11.7	34
47	Atomic force microscope manipulation of gold nanoparticles for controlled Raman enhancement. Applied Physics Letters, 2008, 92, 023109.	3.3	31
48	Optical properties of single coupled plasmonic nanoparticles. Physical Chemistry Chemical Physics, 2013, 15, 4100.	2.8	31
49	Rapid Synthesis of Graphdiyne Films on Hydrogel at the Superspreading Interface for Antibacteria. ACS Nano, 2022, 16, 11338-11345.	14.6	30
50	Inâ€Plane Uniaxial Strain in Black Phosphorus Enables the Identification of Crystalline Orientation. Small, 2017, 13, 1700466.	10.0	29
51	Nonlocal Response in Infrared Detector with Semiconducting Carbon Nanotubes and Graphdiyne. Advanced Science, 2017, 4, 1700472.	11.2	29
52	Light-Concentrating Plasmonic Au Superstructures with Significantly Visible-Light-Enhanced Catalytic Performance. ACS Applied Materials & Interfaces, 2015, 7, 8200-8208.	8.0	28
53	Polarized Raman Spectroscopy for Determining Crystallographic Orientation of Low-Dimensional Materials. Journal of Physical Chemistry Letters, 2021, 12, 7442-7452.	4.6	28
54	Front side plasmonic effect on thin silicon epitaxial solar cells. Solar Energy Materials and Solar Cells, 2012, 104, 58-63.	6.2	27

#	Article	IF	CITATIONS
55	Simultaneous Dielectrophoretic Separation and Assembly of Single-Walled Carbon Nanotubes on Multigap Nanoelectrodes and Their Thermal Sensing Properties. Analytical Chemistry, 2006, 78, 8069-8075.	6.5	26
56	Thermochemical Hole Burning on a Triethylammonium Bis-7,7,8,8-tetracyanoquinodimethane Charge-Transfer Complex Using Single-Walled Carbon Nanotube Scanning Tunneling Microscopy Tips. Journal of Physical Chemistry B, 2005, 109, 3526-3530.	2.6	23
57	Characterization of Excitonic Nature in Raman Spectra Using Circularly Polarized Light. ACS Nano, 2020, 14, 10527-10535.	14.6	21
58	Guided transport of nanoparticles by plasmonic nanowires. Nanoscale, 2016, 8, 19195-19199.	5.6	20
59	Investigation of black phosphorus as a nano-optical polarization element by polarized Raman spectroscopy. Nano Research, 2018, 11, 3154-3163.	10.4	19
60	Electrochemical deposition of Prussian blue on hydrogen terminated silicon(111). Thin Solid Films, 2006, 515, 1847-1850.	1.8	17
61	Fabrication of electromechanical switch using interconnected single-walled carbon nanotubes. Applied Physics Letters, 2008, 92, .	3.3	17
62	Nonlinear Amplification of Chirality in Self-Assembled Plasmonic Nanostructures. ACS Nano, 2021, 15, 5715-5724.	14.6	17
63	Helicityâ€resolved resonant Raman spectroscopy of layered WS ₂ . Journal of Raman Spectroscopy, 2021, 52, 525-531.	2.5	16
64	Oneâ€Interlayerâ€Twisted Multilayer MoS ₂ Moiré Superlattices. Advanced Functional Materials, 2022, 32, .	14.9	16
65	Doping modulated in-plane anisotropic Raman enhancement on layered ReS2. Nano Research, 2019, 12, 563-568.	10.4	15
66	Realâ€Time Observation of Carbon Nanotube Etching Process Using Polarized Optical Microscope. Advanced Materials, 2017, 29, 1701959.	21.0	13
67	Multishelled CuO/Cu2O induced fast photo-vapour generation for drinking water. Nano Research, 2022, 15, 4117-4123.	10.4	13
68	Exploring quantification in a mixture using graphene-based surface-enhanced Raman spectroscopy. Applied Materials Today, 2019, 15, 288-293.	4.3	12
69	The helicity of Raman scattered light: principles and applications in two-dimensional materials. Science China Chemistry, 2022, 65, 269-283.	8.2	12
70	Quantum interference directed chiral raman scattering in two-dimensional enantiomers. Nature Communications, 2022, 13, 1254.	12.8	12
71	Investigation of Etching Behavior of Single-Walled Carbon Nanotubes Using Different Etchants. Journal of Physical Chemistry C, 2017, 121, 27655-27663.	3.1	11
72	Enhanced exfoliation efficiency of graphite into few-layer graphene via reduction of graphite edge. Carbon, 2018, 138, 390-396.	10.3	11

#	Article	IF	Citations
73	Bifacial Raman Enhancement on Monolayer Two-Dimensional Materials. Nano Letters, 2019, 19, 1124-1130.	9.1	10
74	Rapid synthesis of few-layer graphdiyne using radio frequency heating and its application for dendrite-free zinc anodes. 2D Materials, 2021, 8, 044003.	4.4	10
75	New progress of plasmonics in complex metal nanostructures. Science China: Physics, Mechanics and Astronomy, 2013, 56, 2327-2336.	5.1	9
76	The road to chirality-specific growth of single-walled carbon nanotubes. National Science Review, 2018, 5, 310-312.	9.5	8
77	Tuning bandstructure of folded MoS2 through fluid dynamics. Nano Research, 2022, 15, 2734-2740.	10.4	7
78	Selective sorting of metallic/semiconducting single-walled carbon nanotube arrays by â€igniter-assisted gas-phase etching'. Materials Chemistry Frontiers, 2018, 2, 157-162.	5.9	6
79	Formation of nanogaps by nanoscale Cu electrodeposition and dissolution. Electrochimica Acta, 2007, 52, 4210-4214.	5.2	5
80	Local modulation of excitons and trions in monolayer WS2 by carbon nanotubes. Nano Research, 2020, 13, 1982-1987.	10.4	5
81	Determining the Oblique Angle of Vertical Graphene Arrays Using Helicity-Resolved Raman Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 8353-8359.	3.1	5
82	Laser irradiation induced spectral evolution of the surface-enhanced raman scattering (SERS) of 4-tert-butylbenzylmercaptan on gold nanoparticles assembly. Science in China Series B: Chemistry, 2007, 50, 520-525.	0.8	4
83	Anisotropic Raman spectrum and transport properties of AuTe ₂ Br flakes. Journal of Physics Condensed Matter, 2020, 32, 12LT01.	1.8	4
84	Complex Raman Tensor in Helicity-Changing Raman Spectra of Black Phosphorus under Circularly Polarized Light. Journal of Physical Chemistry Letters, 2022, 13, 1241-1248.	4.6	4
85	First-principles calculations of double resonance Raman spectra for monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>MoTe</mml:mi><th>ml:3020w></th><th><m#ml:mn>2≪</m#ml:mn></th></mml:mrow></mml:msub></mml:math>	ml :302 0w>	<m#ml:mn>2≪</m#ml:mn>
86	Optical Tweezers for Raman Spectroscopy. , 2012, , 507-530.		3
87	Enhanced Raman Scattering on Graphene and Beyond. ACS Symposium Series, 2016, , 97-119.	0.5	3
88	Anisotropic Ramanâ€Enhancement Effect on Singleâ€Walled Carbon Nanotube Arrays. Advanced Materials Interfaces, 2018, 5, 1700941.	3.7	3
89	Direct Synthesis of Gold Nanoparticleâ€Overâ€Nanosheet for Sensitive SERS Detection. Particle and Particle Systems Characterization, 2018, 36, 1800350.	2.3	3
90	Raman Spectroscopy of Anisotropic Two-Dimensional Materials. Springer Series in Materials Science, 2019, , 53-80.	0.6	3

#	Article	IF	CITATIONS
91	Twist-Induced New Phonon Scattering Pathways in Bilayer Graphene Probed by Helicity-Resolved Raman Spectroscopy. Journal of Physical Chemistry C, 2022, 126, 10487-10493.	3.1	3
92	Optical manipulation of plasmonic nanoparticles using laser tweezers. , 2010, , .		2
93	Abnormal intensity and polarization of Raman scattered light at edges of layered MoS2. Nano Research, 2022, 15, 6416-6421.	10.4	2
94	Research progress in surface-plasmon-induced optical force. Scientia Sinica: Physica, Mechanica Et Astronomica, 2014, 44, 1127-1139.	0.4	1
95	Monitoring Strain-Controlled Exciton–Phonon Coupling in Layered MoS ₂ by Circularly Polarized Light. Journal of Physical Chemistry Letters, 2021, 12, 11555-11562.	4.6	1
96	Highly Efficient Photothermal Conversion and Water Transport during Solar Evaporation Enabled by Amorphous Hollow Multishelled Nanocomposites (Adv. Mater. 7/2022). Advanced Materials, 2022, 34, .	21.0	1
97	Laser Manipulation of Plasmonic Nanoparticles for SERS and Sensing. , 2012, , 153-167.		0