
An Wouters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1327044/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent insights in the PI3K/Akt pathway as a promising therapeutic target in combination with EGFRâ€ŧargeting agents to treat head and neck squamous cell carcinoma. Medicinal Research Reviews, 2022, 42, 112-155.	10.5	24
2	Microenvironment-driven intratumoral heterogeneity in head and neck cancers: clinical challenges and opportunities for precision medicine. Drug Resistance Updates, 2022, 60, 100806.	14.4	41
3	Luminescent HumanÂiPSC-Derived Neurospheroids Enable Modeling of Neurotoxicity After Oxygen–glucose Deprivation. Neurotherapeutics, 2022, 19, 550-569.	4.4	5
4	Characterization of acquired nutlin-3 resistant non-small cell lung cancer cells. , 2021, 4, 233-243.		6
5	Mechanisms of Cetuximab Resistance and How to Overcome It. , 2021, , 21-51.		1
6	Cancer-Associated Fibroblasts as a Common Orchestrator of Therapy Resistance in Lung and Pancreatic Cancer. Cancers, 2021, 13, 987.	3.7	38
7	Targeting the PD-1 Axis with Pembrolizumab for Recurrent or Metastatic Cancer of the Uterine Cervix: A Brief Update. International Journal of Molecular Sciences, 2021, 22, 1807.	4.1	8
8	A systematic review on poly(I:C) and poly-ICLC in glioblastoma: adjuvants coordinating the unlocking of immunotherapy. Journal of Experimental and Clinical Cancer Research, 2021, 40, 213.	8.6	42
9	The Role of Akt in Acquired Cetuximab Resistant Head and Neck Squamous Cell Carcinoma: An In Vitro Study on a Novel Combination Strategy. Frontiers in Oncology, 2021, 11, 697967.	2.8	11
10	The Right Partner in Crime: Unlocking the Potential of the Anti-EGFR Antibody Cetuximab via Combination With Natural Killer Cell Chartering Immunotherapeutic Strategies. Frontiers in Immunology, 2021, 12, 737311.	4.8	28
11	The potential and controversy of targeting STAT family members in cancer. Seminars in Cancer Biology, 2020, 60, 41-56.	9.6	226
12	Cetuximab-induced natural killer cell cytotoxicity in head and neck squamous cell carcinoma cell lines: investigation of the role of cetuximab sensitivity and HPV status. British Journal of Cancer, 2020, 123, 752-761.	6.4	25
13	The Benefit of Reactivating p53 under MAPK Inhibition on the Efficacy of Radiotherapy in Melanoma. Cancers, 2019, 11, 1093.	3.7	18
14	Overcoming Intrinsic and Acquired Cetuximab Resistance in RAS Wild-Type Colorectal Cancer: An In Vitro Study on the Expression of HER Receptors and the Potential of Afatinib. Cancers, 2019, 11, 98.	3.7	10
15	RANK-RANKL Signaling in Cancer of the Uterine Cervix: A Review. International Journal of Molecular Sciences, 2019, 20, 2183.	4.1	22
16	<i>InÂvitro</i> study of the Poloâ€like kinase 1 inhibitor volasertib in nonâ€smallâ€cell lung cancer reveals a role for the tumor suppressor p53. Molecular Oncology, 2019, 13, 1196-1213.	4.6	17
17	Radiosensitization of Non-Small Cell Lung Cancer Cells by the Plk1 Inhibitor Volasertib Is Dependent on the p53 Status. Cancers, 2019, 11, 1893.	3.7	7
18	RANK/RANKL signaling inhibition may improve the effectiveness of checkpoint blockade in cancer treatment. Critical Reviews in Oncology/Hematology, 2019, 133, 85-91.	4.4	57

AN WOUTERS

#	Article	IF	CITATIONS
19	Simultaneous targeting of <scp>EGFR</scp> , <scp> HER</scp> 2, and <scp>HER</scp> 4 by afatinib overcomes intrinsic and acquired cetuximab resistance in head and neck squamous cell carcinoma cell lines. Molecular Oncology, 2018, 12, 830-854.	4.6	36
20	Poly(I:C) primes primary human glioblastoma cells for an immune response invigorated by PD-L1 blockade. Oncolmmunology, 2018, 7, e1407899.	4.6	38
21	Monitoring EGFR TKI resistance in real time using ddPCR-based liquid biopsy: a case report. Journal of Clinical Pathology, 2018, 71, 754-756.	2.0	3
22	Hypoxia-Induced Cisplatin Resistance in Non-Small Cell Lung Cancer Cells Is Mediated by HIF-1α and Mutant p53 and Can Be Overcome by Induction of Oxidative Stress. Cancers, 2018, 10, 126.	3.7	43
23	Deep sequencing of the <i>TP53</i> gene reveals a potential risk allele for non–small cell lung cancer and supports the negative prognostic value of <i>TP53</i> variants. Tumor Biology, 2017, 39, 101042831769432.	1.8	22
24	Dual Targeting of Epidermal Growth Factor Receptor and HER3 by MEHD7945A as Monotherapy or in Combination with Cisplatin Partially Overcomes Cetuximab Resistance in Head and Neck Squamous Cell Carcinoma Cell Lines. Cancer Biotherapy and Radiopharmaceuticals, 2017, 32, 229-238.	1.0	15
25	MDM2 SNP309 and SNP285 Act as Negative Prognostic Markers for Non-small Cell Lung Cancer Adenocarcinoma Patients. Journal of Cancer, 2017, 8, 2154-2162.	2.5	4
26	Towards Prognostic Profiling of Non-Small Cell Lung Cancer: New Perspectives on the Relevance of Polo-Like Kinase 1 Expression, the <i>TP53</i> Mutation Status and Hypoxia. Journal of Cancer, 2017, 8, 1441-1452.	2.5	11
27	Long-Term Depletion of Conventional Dendritic Cells Cannot Be Maintained in an Atherosclerotic Zbtb46-DTR Mouse Model. PLoS ONE, 2017, 12, e0169608.	2.5	9
28	Dual Targeting of Epidermal Growth Factor Receptor and HER3 by MEHD7945A as Monotherapy or in Combination with Cisplatin Partially Overcomes Cetuximab Resistance in Head and Neck Squamous Cell Carcinoma Cell Lines. Cancer Biotherapy and Radiopharmaceuticals, 2017, 32, 229-238.	1.0	8
29	Spotlight on Volasertib: Preclinical and Clinical Evaluation of a Promising Plk1 Inhibitor. Medicinal Research Reviews, 2016, 36, 749-786.	10.5	78
30	Preclinical and clinical studies on afatinib in monotherapy and in combination regimens: Potential impact in colorectal cancer. , 2016, 166, 71-83.		14
31	Efficacy Screening of <i>Gloriosa Superba</i> Extracts in a Murine Pancreatic Cancer Model Using ¹⁸ F-FDG PET/CT for Monitoring Treatment Response. Cancer Biotherapy and Radiopharmaceuticals, 2016, 31, 99-109.	1.0	13
32	Primary skeletal muscle myoblasts from chronic heart failure patients exhibit loss of anti-inflammatory and proliferative activity. BMC Cardiovascular Disorders, 2016, 16, 107.	1.7	11
33	APR-246 (PRIMA-1 MET) strongly synergizes with AZD2281 (olaparib) induced PARP inhibition to induce apoptosis in non-small cell lung cancer cell lines. Cancer Letters, 2016, 375, 313-322.	7.2	51
34	Reducing Compounds Equivocally Influence Oxidation during Digestion of a High-Fat Beef Product, which Promotes Cytotoxicity in Colorectal Carcinoma Cell Lines. Journal of Agricultural and Food Chemistry, 2016, 64, 1600-1609.	5.2	36
35	Baseline [18F]FMISO μPET as a Predictive Biomarker for Response to HIF-1α Inhibition Combined with 5-FU Chemotherapy in a Human Colorectal Cancer Xenograft Model. Molecular Imaging and Biology, 2016, 18, 606-616.	2.6	11
36	Abstract 258: Is P53 the up-and-coming predictive biomarker for volasertib treatment in NSCLC. , 2016, , .		0

AN WOUTERS

#	Article	IF	CITATIONS
37	The MDM2-inhibitor Nutlin-3 synergizes with cisplatin to induce p53 dependent tumor cell apoptosis in non-small cell lung cancer. Oncotarget, 2015, 6, 22666-22679.	1.8	62
38	Phytochemical characterisation of a cytotoxic stem bark extract of Steganotaenia araliacea and identification of a protoflavanone by LC–SPE–NMR. Phytochemistry Letters, 2015, 12, 119-124.	1.2	11
39	In vitro and in vivo investigations on the antitumour activity of Chelidonium majus. Phytomedicine, 2015, 22, 1279-1287.	5.3	39
40	The hypoxic tumor microenvironment and drug resistance against EGFR inhibitors: preclinical study in cetuximab-sensitive head and neck squamous cell carcinoma cell lines. BMC Research Notes, 2015, 8, 203.	1.4	21
41	Abstract 2593: Combination therapy with EGFR-TKI and cMET-TKIs in non-small cell lung cancer: the golden duo. , 2015, , .		0
42	Abstract 3507: APR-246 reactivates mutant p53 in non-small cell lung cancer cell lines and sensitizes cells for CDDP treatment under normoxic and hypoxic conditions. , 2015, , .		0
43	Abstract 4328: New perspectives on the use of polo-like kinase 1 as a prognostic biomarker in non-small cell lung cancer. , 2015, , .		0
44	Establishment and characterization of cetuximab resistant head and neck squamous cell carcinoma cell lines: focus on the contribution of the AP-1 transcription factor. American Journal of Cancer Research, 2015, 5, 1921-38.	1.4	19
45	Pharmacological Levels of Withaferin A (Withania somnifera) Trigger Clinically Relevant Anticancer Effects Specific to Triple Negative Breast Cancer Cells. PLoS ONE, 2014, 9, e87850.	2.5	70
46	The radiosensitising effect of gemcitabine and its main metabolite dFdU under low oxygen conditions is in vitro not dependent on functional HIF-1 protein. BMC Cancer, 2014, 14, 594.	2.6	6
47	Mutation analysis of genes in the EGFR pathway in Head and Neck cancer patients: implications for anti-EGFR treatment response. BMC Research Notes, 2014, 7, 337.	1.4	35
48	Overcoming cetuximab resistance in HNSCC: The role of AURKB and DUSP proteins. Cancer Letters, 2014, 354, 365-377.	7.2	53
49	Expression Analysis on Archival Material Revisited. Diagnostic Molecular Pathology, 2013, 22, 59-64.	2.1	26
50	Anti-Epidermal Growth Factor Receptor Therapy in Head and Neck Squamous Cell Carcinoma: Focus on Potential Molecular Mechanisms of Drug Resistance. Oncologist, 2013, 18, 850-864.	3.7	82
51	The Intriguing Interplay Between Therapies Targeting the Epidermal Growth Factor Receptor, the Hypoxic Microenvironment and Hypoxia-inducible Factors. Current Pharmaceutical Design, 2013, 19, 907-917.	1.9	24
52	Abstract 3910: Targeting urokinase plasminogen activator: evaluation of activity-based imaging probes in an orthotopic breast cancer model , 2013, , .		0
53	Abstract 5212: Preclinical study of the cytotoxic effect of nutlin-3a as monotherapy or in combination with gemcitabine in non-small cell lung cancer cell lines , 2013, , .		0
54	Abstract 5628: Overcoming cetuximab resistance in HNSCC: the role of AURKB and DUSP6 , 2013, , .		0

AN WOUTERS

#	Article	IF	CITATIONS
55	The intriguing interplay between therapies targeting the epidermal growth factor receptor, the hypoxic microenvironment and hypoxia-inducible factors. Current Pharmaceutical Design, 2013, 19, 907-17.	1.9	15
56	Comparative Analysis of Dynamic Cell Viability, Migration and Invasion Assessments by Novel Real-Time Technology and Classic Endpoint Assays. PLoS ONE, 2012, 7, e46536.	2.5	229
57	Abstract 4300: Comparative assessment of cell viability and motility kinetics by novel real-time technology and classic endpoint assays. , 2012, , .		2
58	Abstract 5250: Optimization of an orthotopic mouse model for <i>in vivo</i> fluorescent uPA imaging in breast cancer. Cancer Research, 2012, 72, 5250-5250.	0.9	5
59	The Intriguing Interplay Between Therapies Targeting the Epidermal Growth Factor Receptor, the Hypoxic Microenvironment and Hypoxia-inducible Factors. Current Pharmaceutical Design, 2012, 19, 907-917.	1.9	3
60	Abstract 2103: High resolution melting analysis: a sensitive screening method for the detection of MDM2 promotor SNP309. , 2012, , .		0
61	Retention of the In Vitro Radiosensitizing Potential of Gemcitabine Under Anoxic Conditions, in p53 Wild-Type and p53-Deficient Non–Small-Cell Lung Carcinoma Cells. International Journal of Radiation Oncology Biology Physics, 2011, 80, 558-566.	0.8	10
62	Expression Analysis on Archival Material. Diagnostic Molecular Pathology, 2011, 20, 203-211.	2.1	16
63	Abstract 1662: REDD1 silencing in A549 lung cancer cells as a potential target for the treatment of anoxic tumor cells. , 2011, , .		0
64	In vitro study on the schedule-dependency of the interaction between pemetrexed, gemcitabine and irradiation in non-small cell lung cancer and head and neck cancer cells. BMC Cancer, 2010, 10, 441.	2.6	13
65	Counting clonogenic assays from normoxic and anoxic irradiation experiments manually or by using densitometric software. Physics in Medicine and Biology, 2010, 55, N167-N178.	3.0	16
66	Role of cell cycle perturbations in the combination therapy of chemotherapeutic agents and radiation. Future Oncology, 2010, 6, 1485-1496.	2.4	23
67	The role of apoptotic cell death in the radiosensitising effect of gemcitabine. British Journal of Cancer, 2009, 101, 628-636.	6.4	17
68	Chemoradiation interactions under reduced oxygen conditions: Cellular characteristics of an in vitro model. Cancer Letters, 2009, 286, 180-188.	7.2	19
69	Review: Implications of In Vitro Research on the Effect of Radiotherapy and Chemotherapy Under Hypoxic Conditions. Oncologist, 2007, 12, 690-712.	3.7	124