Colin W Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1327034/publications.pdf

Version: 2024-02-01

221 papers

9,625 citations

47409 49 h-index 60403

g-index

244 all docs 244 docs citations

244 times ranked 8343 citing authors

#	Article	IF	Citations
1	iRhom pseudoproteases regulate ER stress-induced cell death through IP3 receptors and BCL-2. Nature Communications, 2022, 13, 1257.	5.8	12
2	The store-operated Ca $<$ sup $>2+sup> entry complex comprises a small cluster of STIM1 associated with one Orai1 channel. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .$	3.3	17
3	A tribute to Professor Sir Michael J. Berridge FRS (1938–2020). Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119014.	1.9	2
4	KRAP tethers IP3 receptors to actin and licenses them to evoke cytosolic Ca2+ signals. Nature Communications, 2021, 12, 4514.	5 . 8	27
5	P2X4 Receptors Mediate Ca2+ Release from Lysosomes in Response to Stimulation of P2X7 and H1 Histamine Receptors. International Journal of Molecular Sciences, 2021, 22, 10492.	1.8	6
6	Quantal Ca2+ release mediated by very few IP3 receptors that rapidly inactivate allows graded responses to IP3. Cell Reports, 2021, 37, 109932.	2.9	7
7	Inositol Adenophostin: Convergent Synthesis of a Potent Agonist of <scp>d</scp> - <i>myo</i> -lnositol 1,4,5-Trisphosphate Receptors. ACS Omega, 2020, 5, 28793-28811.	1.6	5
8	Reliable measurement of free Ca2+ concentrations in the ER lumen using Mag-Fluo-4. Cell Calcium, 2020, 87, 102188.	1.1	29
9	IP3 receptors and their intimate liaisons. Current Opinion in Physiology, 2020, 17, 9-16.	0.9	3
10	<scp>d- <i>chiro</i> -lnositol Ribophostin: A Highly Potent Agonist of $<$ scp>d- <i>myo</i> -lnositol 1,4,5-Trisphosphate Receptors: Synthesis and Biological Activities. Journal of Medicinal Chemistry, 2020, 63, 3238-3251.	2.9	11
11	Both <scp>d</scp> - and <scp>l</scp> -Glucose Polyphosphates Mimic <scp>d</scp> - <i>myo</i> -lnositol 1,4,5-Trisphosphate: New Synthetic Agonists and Partial Agonists at the Ins(1,4,5)P ₃ Receptor. Journal of Medicinal Chemistry, 2020, 63, 5442-5457.	2.9	8
12	Analyses of Ligand Binding to IP3 Receptors Using Fluorescence Polarization. Methods in Molecular Biology, 2020, 2091, 107-120.	0.4	0
13	Ca2+ Release by IP3 Receptors Is Required to Orient the Mitotic Spindle. Cell Reports, 2020, 33, 108483.	2.9	9
14	A genetically encoded toolkit of functionalized nanobodies against fluorescent proteins for visualizing and manipulating intracellular signalling. BMC Biology, 2019, 17, 41.	1.7	37
15	Remodeling of ER–plasma membrane contact sites but not STIM1 phosphorylation inhibits Ca2+influx in mitosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10392-10401.	3.3	26
16	A synthetic cyclitol-nucleoside conjugate polyphosphate is a highly potent second messenger mimic. Chemical Science, 2019, 10, 5382-5390.	3.7	11
17	Structure and Function of IP ₃ Receptors. Cold Spring Harbor Perspectives in Biology, 2019, 11, a035063.	2.3	114
18	IP3 receptors – lessons from analyses <i>ex cellula</i> . Journal of Cell Science, 2019, 132, .	1.2	16

#	Article	IF	CITATIONS
19	IP3 receptors and Ca2+ entry. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 1092-1100.	1.9	52
20	GPN does not release lysosomal Ca2+, but evokes ER Ca2+ release by increasing cytosolic pH independent of cathepsin C. Journal of Cell Science, 2019, 132, .	1.2	25
21	Choline Is an Intracellular Messenger Linking Extracellular Stimuli to IP3-Evoked Ca2+ Signals through Sigma-1 Receptors. Cell Reports, 2019, 26, 330-337.e4.	2.9	45
22	IP3 receptors and store-operated Ca2+ entry: a license to fill. Current Opinion in Cell Biology, 2019, 57, 1-7.	2.6	38
23	Selective inhibition of histamine-evoked Ca2+ signals by compartmentalized cAMP in human bronchial airway smooth muscle cells. Cell Calcium, 2018, 71, 53-64.	1.1	19
24	Immobile IP3 Receptor Clusters: Building Blocks for IP3-Evoked Ca2+ Signals. Messenger (Los Angeles,) Tj ETQq0	0 0 <u>0 ,</u> gBT	/Oyerlock 10
25	IP3 Receptors Preferentially Associate with ER-Lysosome Contact Sites and Selectively Deliver Ca2+ to Lysosomes. Cell Reports, 2018, 25, 3180-3193.e7.	2.9	124
26	Effective Glucose Uptake by Human Astrocytes Requires Its Sequestration in the Endoplasmic Reticulum by Glucose-6-Phosphatase-1². Current Biology, 2018, 28, 3481-3486.e4.	1.8	28
27	A synthetic diphosphoinositol phosphate analogue of inositol trisphosphate. MedChemComm, 2018, 9, 1105-1113.	3.5	7
28	All three IP3 receptor subtypes generate Ca2+ puffs, the universal building blocks of IP3-evoked Ca2+ signals. Journal of Cell Science, 2018, 131, .	1.2	36
29	Cyclic AMP Recruits a Discrete Intracellular Ca 2+ Store by Unmasking Hypersensitive IP 3 Receptors. Cell Reports, 2017, 18, 711-722.	2.9	20
30	Regulation of IP3 receptors by cyclic AMP. Cell Calcium, 2017, 63, 48-52.	1.1	69
31	Prostaglandin E2 Inhibits Histamine-Evoked Ca2+ Release in Human Aortic Smooth Muscle Cells through Hyperactive cAMP Signaling Junctions and Protein Kinase A. Molecular Pharmacology, 2017, 92, 533-545.	1.0	10
32	Endogenous signalling pathways and caged-IP3 evoke Ca2+ puffs at the same abundant immobile intracellular sites. Journal of Cell Science, 2017, 130, 3728-3739.	1,2	27
33	<scp>ATP</scp> evokes Ca ²⁺ signals in cultured foetal human cortical astrocytes entirely through G proteinâ€coupled P2Y receptors. Journal of Neurochemistry, 2017, 142, 876-885.	2.1	18
34	Ca2+ signals initiate at immobile IP3 receptors adjacent to ER-plasma membrane junctions. Nature Communications, 2017, 8, 1505.	5.8	123
35	Mutant IP3 receptors attenuate store-operated Ca2+ entry by destabilizing STIM-Orai interactions in <i>Drosophila</i> neurons. Journal of Cell Science, 2016, 129, 3903-3910.	1.2	32
36	IP ₃ receptors: Take four IP ₃ to open. Science Signaling, 2016, 9, pe1.	1.6	69

#	Article	IF	CITATIONS
37	Inositol 1,4,5â€trisphosphate receptors and their protein partners as signalling hubs. Journal of Physiology, 2016, 594, 2849-2866.	1.3	119
38	Sigma1 receptors inhibit store-operated Ca2+ entry by attenuating coupling of STIM1 to Orai1. Journal of Cell Biology, 2016, 213, 65-79.	2.3	76
39	Synthesis of dimeric analogs of adenophostin A that potently evoke Ca ²⁺ release through IP ₃ receptors. RSC Advances, 2016, 6, 86346-86351.	1.7	7
40	Chemerin Elicits Potent Constrictor Actions via Chemokineâ€Like Receptor 1 (CMKLR1), not Gâ€Proteinâ€Coupled Receptor 1 (GPR1), in Human and Rat Vasculature. Journal of the American Heart Association, 2016, 5, .	1.6	67
41	Synthesis of inositol phosphate-based competitive antagonists of inositol 1,4,5-trisphosphate receptors. Organic and Biomolecular Chemistry, 2016, 14, 2504-2514.	1.5	5
42	Sigma1 receptors inhibit store-operated Ca2+ entry by attenuating coupling of STIM1 to Orai1. Journal of General Physiology, 2016, 147, 1475OIA26.	0.9	0
43	Microtubule-Associated Protein EB3 Regulates IP3 Receptor Clustering and Ca2+ Signaling in Endothelial Cells. Cell Reports, 2015, 12, 79-89.	2.9	35
44	Fluorescence methods for analysis of interactions between Ca2+ signaling, lysosomes, and endoplasmic reticulum. Methods in Cell Biology, 2015, 126, 237-259.	0.5	0
45	Golgi Anti-apoptotic Proteins Are Highly Conserved Ion Channels That Affect Apoptosis and Cell Migration. Journal of Biological Chemistry, 2015, 290, 11785-11801.	1.6	33
46	Triazolophostins: a library of novel and potent agonists of IP ₃ receptors. Organic and Biomolecular Chemistry, 2015, 13, 6698-6710.	1.5	11
47	Red fluorescent genetically encoded Ca2+ indicators for use in mitochondria and endoplasmic reticulum. Biochemical Journal, 2014, 464, 13-22.	1.7	132
48	Reliable Encoding of Stimulus Intensities Within Random Sequences of Intracellular Ca ²⁺ Spikes. Science Signaling, 2014, 7, ra59.	1.6	101
49	Sustained signalling by PTH modulates IP3 accumulation and IP3 receptors via cyclic AMP junctions. Journal of Cell Science, 2014, 128, 408-20.	1.2	7
50	Structural organization of signalling to and from IP3 receptors. Biochemical Society Transactions, 2014, 42, 63-70.	1.6	35
51	Interactions of antagonists with subtypes of inositol 1,4,5â€trisphosphate (<scp>IP</scp> ₃) receptor. British Journal of Pharmacology, 2014, 171, 3298-3312.	2.7	95
52	Rapid Recycling of Ca2+ between IP3-Sensitive Stores and Lysosomes. PLoS ONE, 2014, 9, e111275.	1.1	32
53	Lysosomes shape $Ins(1,4,5)$ (i>P3-evoked Ca2+ signals by selectively sequestering Ca2+ released from the endoplasmic reticulum. Journal of Cell Science, 2013, 126, 289-300.	1.2	121
54	High-Throughput Fluorescence Polarization Assay of Ligand Binding to IP ₃ Receptors. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot073080.	0.2	8

#	Article	IF	Citations
55	High-Throughput Functional Assays of IP ₃ -Evoked Ca ²⁺ Release. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot073072.	0.2	3
56	High-Throughput Analyses of IP3Receptor Behavior. Cold Spring Harbor Protocols, 2013, 2013, pdb.top066100.	0.2	2
57	Activation of IP3 receptors requires an endogenous 1-8-14 calmodulin-binding motif. Biochemical Journal, 2013, 449, 39-49.	1.7	10
58	Subtype-selective regulation of IP3 receptors by thimerosal via cysteine residues within the IP3-binding core and suppressor domain. Biochemical Journal, 2013, 451, 177-184.	1.7	22
59	Cyclic AMP directs IP3-evoked Ca2+ signalling to different intracellular Ca2+ stores. Journal of Cell Science, 2013, 126, 2305-13.	1.2	23
60	CaBP1, a neuronal Ca ² ⁺ sensor protein, inhibits inositol trisphosphate receptors by clamping intersubunit interactions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8507-8512.	3.3	37
61	hGAAP promotes cell adhesion and migration via the stimulation of store-operated Ca2+ entry and calpain 2. Journal of Cell Biology, 2013, 202, 699-713.	2.3	58
62	Ca 2+ signals evoked by histamine H 1 receptors are attenuated by activation of prostaglandin EP 2 and EP 4 receptors in human aortic smooth muscle cells. British Journal of Pharmacology, 2013, 169, 1624-1634.	2.7	15
63	Human and Viral Golgi Anti-apoptotic Proteins (GAAPs) Oligomerize via Different Mechanisms and Monomeric GAAP Inhibits Apoptosis and Modulates Calcium. Journal of Biological Chemistry, 2013, 288, 13057-13067.	1.6	30
64	Stimulation of Inositol 1,4,5-Trisphosphate (IP3) Receptor Subtypes by Analogues of IP3. PLoS ONE, 2013, 8, e54877.	1.1	22
65	Stimulation of Inositol 1,4,5-Trisphosphate (IP3) Receptor Subtypes by Adenophostin A and Its Analogues. PLoS ONE, 2013, 8, e58027.	1.1	16
66	A Bead Aggregation Assay for Detection of Low-Affinity Protein-Protein Interactions Reveals Interactions between N-Terminal Domains of Inositol 1,4,5-Trisphosphate Receptors. PLoS ONE, 2013, 8, e60609.	1.1	6
67	Identification and Analysis of Putative Homologues of Mechanosensitive Channels in Pathogenic Protozoa. PLoS ONE, 2013, 8, e66068.	1.1	57
68	Structural and functional conservation of key domains in InsP3 and ryanodine receptors. Nature, 2012, 483, 108-112.	13.7	163
69	P2Y receptor subtypes evoke different Ca2+ signals in cultured aortic smooth muscle cells. Purinergic Signalling, 2012, 8, 763-777.	1.1	21
70	Contribution of Phosphates and Adenine to the Potency of Adenophostins at the IP ₃ Receptor: Synthesis of All Possible Bisphosphates of Adenophostin A. Journal of Medicinal Chemistry, 2012, 55, 1706-1720.	2.9	22
71	Spatial organization of intracellular Ca2+ signals. Seminars in Cell and Developmental Biology, 2012, 23, 172-180.	2.3	43
72	Analysis of IP3 receptors in and out of cells. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 1214-1227.	1.1	15

#	Article	IF	CITATIONS
73	From parathyroid hormone to cytosolic Ca2+ signals. Biochemical Society Transactions, 2012, 40, 147-152.	1.6	23
74	Intracellular Ca2+ channels – A growing community. Molecular and Cellular Endocrinology, 2012, 353, 21-28.	1.6	19
75	Ca2+ Signalling by IP3 Receptors. Sub-Cellular Biochemistry, 2012, 59, 1-34.	1.0	13
76	Identification and Analysis of Cation Channel Homologues in Human Pathogenic Fungi. PLoS ONE, 2012, 7, e42404.	1.1	27
77	Timescales of IP3-Evoked Ca2+ Spikes Emerge from Ca2+ Puffs Only at the Cellular Level. Biophysical Journal, 2011, 101, 2638-2644.	0.2	47
78	Identification of Intracellular and Plasma Membrane Calcium Channel Homologues in Pathogenic Parasites. PLoS ONE, 2011, 6, e26218.	1.1	107
79	Rahman et al. reply. Nature, 2011, 478, E2-E3.	13.7	3
80	Analysis of protein-ligand interactions by fluorescence polarization. Nature Protocols, 2011, 6, 365-387.	5 . 5	296
81	The endo-lysosomal system as an NAADP-sensitive acidic Ca2+ store: Role for the two-pore channels. Cell Calcium, 2011, 50, 157-167.	1.1	60
82	Membrane Topology of NAADP-sensitive Two-pore Channels and Their Regulation by N-linked Glycosylation. Journal of Biological Chemistry, 2011, 286, 9141-9149.	1.6	57
83	Differential Distribution, Clustering, and Lateral Diffusion of Subtypes of the Inositol 1,4,5-Trisphosphate Receptor. Journal of Biological Chemistry, 2011, 286, 23378-23387.	1.6	41
84	Targeting of inositol 1,4,5-trisphosphate receptor to the endoplasmic reticulum by its first transmembrane domain. Biochemical Journal, 2010, 425, 61-74.	1.7	13
85	Three-dimensional structure of recombinant typeÂ1 inositol 1,4,5-trisphosphate receptor. Biochemical Journal, 2010, 428, 483-489.	1.7	19
86	Ca ²⁺ signalling by P2Y receptors in cultured rat aortic smooth muscle cells. British Journal of Pharmacology, 2010, 160, 1953-1962.	2.7	25
87	Selective determinants of inositol 1,4,5â€trisphosphate and adenophostin A interactions with type 1 inositol 1,4,5â€trisphosphate receptors. British Journal of Pharmacology, 2010, 161, 1070-1085.	2.7	27
88	IP3 Receptors. , 2010, , 921-925.		0
89	IP3 Receptors: Toward Understanding Their Activation. Cold Spring Harbor Perspectives in Biology, 2010, 2, a004010-a004010.	2.3	238
90	An NAADP-gated Two-pore Channel Targeted to the Plasma Membrane Uncouples Triggering from Amplifying Ca2+ Signals. Journal of Biological Chemistry, 2010, 285, 38511-38516.	1.6	153

#	Article	IF	Citations
91	Binding of Inositol 1,4,5-trisphosphate (IP ₃) and Adenophostin A to the N-Terminal region of the IP ₃ Receptor: Thermodynamic Analysis Using Fluorescence Polarization with a Novel IP ₃ Receptor Ligand. Molecular Pharmacology, 2010, 77, 995-1004.	1.0	37
92	Regulation of Inositol 1,4,5-Trisphosphate Receptors by cAMP Independent of cAMP-dependent Protein Kinase. Journal of Biological Chemistry, 2010, 285, 12979-12989.	1.6	46
93	Nuclear Patch-Clamp Recording from Inositol 1,4,5-Trisphosphate Receptors. Methods in Cell Biology, 2010, 99, 199-224.	0.5	7
94	Adenophostins. Current Topics in Membranes, 2010, 66, 209-233.	0.5	25
95	Targeting and clustering of IP3 receptors: Key determinants of spatially organized Ca2+ signals. Chaos, 2009, 19, 037102.	1.0	21
96	Functional Ryanodine Receptors in the Plasma Membrane of RINm5F Pancreatic \hat{l}^2 -Cells. Journal of Biological Chemistry, 2009, 284, 5186-5194.	1.6	18
97	Dynamic regulation of IP3 receptor clustering and activity by IP3. Channels, 2009, 3, 226-232.	1.5	37
98	Clustering of InsP3 receptors by InsP3 retunes their regulation by InsP3 and Ca2+. Nature, 2009, 458, 655-659.	13.7	165
99	Synthetic partial agonists reveal key steps in IP3 receptor activation. Nature Chemical Biology, 2009, 5, 631-639.	3.9	69
100	IP ₃ receptors: some lessons from DT40 cells. Immunological Reviews, 2009, 231, 23-44.	2.8	45
101	Ca ²⁺ Channels on the Move. Biochemistry, 2009, 48, 12062-12080.	1.2	37
102	Activation of IP3 receptors by synthetic bisphosphate ligands. Chemical Communications, 2009, , 1204.	2.2	27
103	How Does Intracellular Ca2+ Oscillate: By Chance or by the Clock?. Biophysical Journal, 2008, 94, 2404-2411.	0.2	169
104	2-Position Base-Modified Analogues of Adenophostin A as High-Affinity Agonists of the d-myo-Inositol Trisphosphate Receptor:  In Vitro Evaluation and Molecular Modeling. Journal of Organic Chemistry, 2008, 73, 1682-1692.	1.7	19
105	Counting Functional Inositol 1,4,5-Trisphosphate Receptors into the Plasma Membrane. Journal of Biological Chemistry, 2008, 283, 751-755.	1.6	35
106	Selective coupling of type 6 adenylyl cyclase with type 2 IP3 receptors mediates direct sensitization of IP3 receptors by cAMP. Journal of Cell Biology, 2008, 183, 297-311.	2.3	93
107	A calmodulin antagonist reveals a calmodulin-independent interdomain interaction essential for activation of inositol 1,4,5-trisphosphate receptors. Biochemical Journal, 2008, 416, 243-253.	1.7	13
108	Regulation of Ca2+ Entry Pathways by Both Limbs of the Phosphoinositide Pathway. Novartis Foundation Symposium, 2008, , 91-107.	1.2	3

#	Article	IF	CITATIONS
109	Selective coupling of type 6 adenylyl cyclase with type 2 IP ₃ receptors mediates direct sensitization of IP ₃ receptors by cAMP. Journal of General Physiology, 2008, 132, i5-i5.	0.9	1
110	Targeting and Retention of Type 1 Ryanodine Receptors to the Endoplasmic Reticulum*. Journal of Biological Chemistry, 2007, 282, 23096-23103.	1.6	19
111	Guanophostin A: Synthesis and evaluation of a high affinity agonist of the d-myo-inositol 1,4,5-trisphosphate receptor. Chemical Communications, 2006, , 2015.	2.2	12
112	Design and Synthesis of 5â€~-Deoxy-5â€~-Phenyladenophostin A, a Highly Potent IP3Receptor Ligand1. Organic Letters, 2006, 8, 1455-1458.	2.4	14
113	A Systematic Study of C-Glucoside Trisphosphates as myo-Inositol Trisphosphate Receptor Ligands. Synthesis of \hat{I}^2 -C-Glucoside Trisphosphates Based on the Conformational Restriction Strategy. Journal of Medicinal Chemistry, 2006, 49, 1900-1909.	2.9	15
114	Synthesis of Adenophostin A Analogues Conjugating an Aromatic Group at the 5â€~-Position as Potent IP3 Receptor Ligands. Journal of Medicinal Chemistry, 2006, 49, 5750-5758.	2.9	22
115	Stimulation of arachidonic acid release by vasopressin in A7r5 vascular smooth muscle cells mediated by Ca2+-stimulated phospholipase A2. FEBS Letters, 2006, 580, 4114-4120.	1.3	7
116	Plasma membrane IP3 receptors. Biochemical Society Transactions, 2006, 34, 910-912.	1.6	18
117	Rapid functional assays of intracellular Ca2+ channels. Nature Protocols, 2006, 1, 259-263.	5.5	46
118	Prostaglandin F2α increases the sensitivity of the contractile proteins to Ca2+ in human myometrium. American Journal of Obstetrics and Gynecology, 2006, 195, 1404-1406.	0.7	20
119	Store-operated Ca2+ entry: a STIMulating stOrai. Trends in Biochemical Sciences, 2006, 31, 597-601.	3.7	38
120	Ca2+ Entry Through Plasma Membrane IP3 Receptors. Science, 2006, 313, 229-233.	6.0	170
121	Different phospholipase-C-coupled receptors differentially regulate capacitative and non-capacitative Ca2+ entry in A7r5 cells. Biochemical Journal, 2005, 389, 821-829.	1.7	31
122	Synthesis of 4,8-anhydro-d-glycero-d-ido-nonanitol 1,6,7-trisphosphate as a novel IP3 receptor ligand using a stereoselective radical cyclization reaction based on a conformational restriction strategy. Tetrahedron, 2005, 61, 3697-3707.	1.0	17
123	What's in store for Ca2+oscillations?. Journal of Physiology, 2005, 562, 645-645.	1.3	2
124	Rapid functional assays of recombinant IP3 receptors. Cell Calcium, 2005, 38, 45-51.	1.1	33
125	Long Lasting Inhibition of Adenylyl Cyclase Selectively Mediated by Inositol 1,4,5-Trisphosphate-evoked Calcium Release. Journal of Biological Chemistry, 2005, 280, 8936-8944.	1.6	10
126	Adenophostin A and analogues modified at the adenine moiety: synthesis, conformational analysis and biological activity. Organic and Biomolecular Chemistry, 2005, 3, 245.	1.5	25

#	Article	IF	CITATIONS
127	Ca2+ Regulation of Inositol 1,4,5-trisphosphate Receptors: Can Ca2+ Function without Calmodulin?. Molecular Pharmacology, 2004, 66, 199-203.	1.0	12
128	Targeting of Inositol 1,4,5-Trisphosphate Receptors to the Endoplasmic Reticulum by Multiple Signals within Their Transmembrane Domains. Journal of Biological Chemistry, 2004, 279, 23797-23805.	1.6	37
129	IP3 receptors: the search for structure. Trends in Biochemical Sciences, 2004, 29, 210-219.	3.7	144
130	Effect of an oxytocin receptor antagonist and rho kinase inhibitor on the [Ca++]i sensitivity of human myometrium. American Journal of Obstetrics and Gynecology, 2004, 190, 222-228.	0.7	45
131	Dimers of d-myo-Inositol 1,4,5-Trisphosphate:  Design, Synthesis, and Interaction with Ins(1,4,5)P3 Receptors. Bioconjugate Chemistry, 2004, 15, 278-289.	1.8	28
132	Regulation of capacitative and non-capacitative Ca2+ entry in A7r5 vascular smooth muscle cells. Biological Research, 2004, 37, 641-5.	1.5	9
133	IP3 Receptors. , 2004, , 478-481.		0
134	Modulation of IP3-sensitive Ca2+ release by 2,3-butanedione monoxime. Pflugers Archiv European Journal of Physiology, 2003, 445, 614-621.	1.3	7
135	Parathyroid hormone increases the sensitivity of inositol trisphosphate receptors by a mechanism that is independent of cyclic AMP. British Journal of Pharmacology, 2003, 138, 81-90.	2.7	24
136	Synthesis and Ca2+-Mobilizing Activity of Purine-Modified Mimics of Adenophostin A:Â A Model for the Adenophostinâ ¹ Ins(1,4,5)P3Receptor Interaction. Journal of Medicinal Chemistry, 2003, 46, 4860-4871.	2.9	40
137	Domain organization of the type 1 inositol 1,4,5-trisphosphate receptor as revealed by single-particle analysis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3936-3941.	3.3	88
138	Nitric oxide co-ordinates the activities of the capacitative and non-capacitative Ca2+-entry pathways regulated by vasopressin. Biochemical Journal, 2003, 370, 439-448.	1.7	54
139	IP3 Receptors. , 2003, , 41-43.		1
140	Fast Biphasic Regulation of Type 3 Inositol Trisphosphate Receptors by Cytosolic Calcium. Journal of Biological Chemistry, 2002, 277, 17571-17579.	1.6	24
141	Interactions of Inositol 1,4,5-Trisphosphate (IP3) Receptors with Synthetic Poly(ethylene glycol)-linked Dimers of IP3 Suggest Close Spacing of the IP3-binding Sites. Journal of Biological Chemistry, 2002, 277, 40290-40295.	1.6	27
142	A novel Ca2+-induced Ca2+ release mechanism mediated by neither inositol trisphosphate nor ryanodine receptors. Biochemical Journal, 2002, 361, 605.	1.7	14
143	Reciprocal regulation of capacitative and non-capacitative Ca2+ entry in A7r5 vascular smooth muscle cells: only the latter operates during receptor activation. Biochemical Journal, 2002, 362, 13.	1.7	45
144	Determinants of adenophostin A binding to inositol trisphosphate receptors. Biochemical Journal, 2002, 367, 113-120.	1.7	29

#	Article	IF	Citations
145	A novel Ca2+-induced Ca2+ release mechanism mediated by neither inositol trisphosphate nor ryanodine receptors. Biochemical Journal, 2002, 361, 605-611.	1.7	22
146	Reciprocal regulation of capacitative and non-capacitative Ca2+ entry in A7r5 vascular smooth muscle cells: only the latter operates during receptor activation. Biochemical Journal, 2002, 362, 13-21.	1.7	71
147	Paclitaxel Affects Cytosolic Calcium Signals by Opening the Mitochondrial Permeability Transition Pore. Journal of Biological Chemistry, 2002, 277, 6504-6510.	1.6	168
148	Controlling Calcium Entry. Cell, 2002, 111, 767-769.	13.5	79
149	IP3 receptors and their regulation by calmodulin and cytosolic Ca2+. Cell Calcium, 2002, 32, 321-334.	1.1	209
150	Bicyclic Analogues ofd-myo-Inositol 1,4,5-Trisphosphate Related to Adenophostin A:Â Synthesis and Biological Activity. Journal of Medicinal Chemistry, 2001, 44, 2108-2117.	2.9	22
151	Structural Determinants of Adenophostin A Activity at Inositol Trisphosphate Receptors. Molecular Pharmacology, 2001, 59, 1206-1215.	1.0	55
152	Selective recognition of inositol phosphates by subtypes of the inositol trisphosphate receptor. Biochemical Journal, 2001, 355, 59.	1.7	38
153	Functional properties of Drosophila inositol trisphosphate receptors. Biochemical Journal, 2001, 359, 435.	1.7	13
154	Selective recognition of inositol phosphates by subtypes of the inositol trisphosphate receptor. Biochemical Journal, 2001, 355, 59-69.	1.7	46
155	Functional properties of Drosophila inositol trisphosphate receptors. Biochemical Journal, 2001, 359, 435-441.	1.7	21
156	Xylopyranoside-based agonists of d-myo-inositol 1,4,5-trisphosphate receptors: synthesis and effect of stereochemistry on biological activity. Carbohydrate Research, 2001, 332, 53-66.	1.1	21
157	Calcium signalling: IP3 rises again… and again. Current Biology, 2001, 11, R352-R355.	1.8	82
158	Crucial Role of Type 1, but Not Type 3, Inositol 1,4,5-Trisphosphate (IP ₃) Receptors in IP ₃ -Induced Ca ²⁺ Release, Capacitative Ca ²⁺ Entry, and Proliferation of A7r5 Vascular Smooth Muscle Cells. Circulation Research, 2001, 88, 202-209.	2.0	49
159	Ca2+-calmodulin inhibits Ca2+ release mediated by type-1, -2 and -3 inositol trisphosphate receptors. Biochemical Journal, 2000, 345, 357.	1.7	34
160	Different receptors use inositol trisphosphate to mobilize Ca2+ from different intracellular pools. Biochemical Journal, 2000, 351, 683.	1.7	3
161	Rapid activation and partial inactivation of inositol trisphosphate receptors by adenophostin A. Biochemical Journal, 2000, 352, 929.	1.7	9
162	Ca2+-calmodulin inhibits Ca2+ release mediated by type-1, -2 and -3 inositol trisphosphate receptors. Biochemical Journal, 2000, 345, 357-363.	1.7	80

#	Article	IF	Citations
163	Different receptors use inositol trisphosphate to mobilize Ca2+ from different intracellular pools. Biochemical Journal, 2000, 351, 683-686.	1.7	21
164	C-Glycoside based mimics of d-myo-inositol 1,4,5-trisphosphate. Carbohydrate Research, 2000, 329, 7-16.	1.1	18
165	Synthesis of adenophostin A. Tetrahedron: Asymmetry, 2000, 11, 397-403.	1.8	26
166	Parathyroid Hormone Controls the Size of the Intracellular Ca2+ Stores Available to Receptors Linked to Inositol Trisphosphate Formation. Journal of Biological Chemistry, 2000, 275, 1807-1813.	1.6	32
167	Expression and Distribution of InsP3 Receptor Subtypes in Proliferating Vascular Smooth Muscle Cells. Biochemical and Biophysical Research Communications, 2000, 273, 907-912.	1.0	35
168	Synthesis of Potent Agonists of the d-myo-Inositol 1,4,5-Trisphosphate Receptor Based on Clustered Disaccharide Polyphosphate Analogues of Adenophostin A. Journal of Medicinal Chemistry, 2000, 43, 3295-3303.	2.9	71
169	Contribution of the Adenine Base to the Activity of Adenophostin A Investigated Using a Base Replacement Strategy. Journal of Medicinal Chemistry, 2000, 43, 4278-4287.	2.9	19
170	Rapid activation and partial inactivation of inositol trisphosphate receptors by adenophostin A. Biochemical Journal, 2000, 352, 929-933.	1.7	14
171	Oxytocin increases the [Ca ²⁺] _i sensitivity of human myometrium during the falling phase of phasic contractions. American Journal of Physiology - Endocrinology and Metabolism, 1999, 276, E345-E351.	1.8	24
172	Acyclophostin: A Ribose-Modified Analog of Adenophostin A with High Affinity for Inositol 1,4,5-Trisphosphate Receptors and pH-Dependent Efficacy. Molecular Pharmacology, 1999, 55, 109-117.	1.0	26
173	Simplification of adenophostin A defines a minimal structure for potent glucopyranoside-based mimics of 1,4,5-trisphosphate. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 453-458.	1.0	31
174	A non-capacitative pathway activated by arachidonic acid is the major Ca2+entry mechanism in rat A7r5 smooth muscle cells stimulated with low concentrations of vasopressin. Journal of Physiology, 1999, 517, 121-134.	1.3	188
175	Inframolecular studies of the protonation of 1d-1,2,4/3,5-cyclopentanepentaol 1,3,4-trisphosphate, a ring-contracted analogue of 1d-myo-inositol 1,4,5-trisphosphate. Carbohydrate Research, 1999, 322, 95-101.	1.1	4
176	Expression of inositol trisphosphate receptors. Cell Calcium, 1999, 26, 237-251.	1.1	268
177	Lateral inhibition of inositol 1,4,5-trisphosphate receptors by cytosolic Ca2+. Current Biology, 1999, 9, 1115-1118.	1.8	139
178	Receptors linked to polyphosphoinositide hydrolysis stimulate Ca2+ extrusion by a phospholipase C-independent mechanism. Biochemical Journal, 1999, 342, 199.	1.7	1
179	Receptors linked to polyphosphoinositide hydrolysis stimulate Ca2+ extrusion by a phospholipase C-independent mechanism. Biochemical Journal, 1999, 342, 199-206.	1.7	11
180	Type 3 inositol trisphosphate receptors in RINm5F cells are biphasically regulated by cytosolic Ca2+ and mediate quantal Ca2+ mobilization. Biochemical Journal, 1999, 344, 55-60.	1.7	47

#	Article	IF	CITATIONS
181	Extracellular heavy-metal ions stimulate Ca2+ mobilization in hepatocytes. Biochemical Journal, 1999, 339, 555.	1.7	25
182	Type 3 inositol trisphosphate receptors in RINm5F cells are biphasically regulated by cytosolic Ca2+ and mediate quantal Ca2+ mobilization. Biochemical Journal, 1999, 344, 55.	1.7	15
183	Pharmacological analysis of intracellular Ca2+ signalling: problems and pitfalls. Trends in Pharmacological Sciences, 1998, 19, 370-375.	4.0	154
184	Inositol trisphosphate receptors: Ca2+-modulated intracellular Ca2+ channels. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1998, 1436, 19-33.	1,2	153
185	Rapid Activation and Partial Inactivation of Inositol Trisphosphate Receptors by Inositol Trisphosphateâ€. Biochemistry, 1998, 37, 11524-11533.	1.2	67
186	A novel role for calmodulin: Ca2+-independent inhibition of type-1 inositol trisphosphate receptors. Biochemical Journal, 1998, 334, 447-455.	1.7	82
187	Luminal Ca2+ regulates passive Ca2+ efflux from the intracellular stores of hepatocytes. Biochemical Journal, 1998, 334, 431-435.	1.7	14
188	Rapid kinetic measurements of 45Ca2+ mobilization reveal that Ins(2,4,5)P3 is a partial agonist at hepatic InsP3 receptors. Biochemical Journal, 1997, 321, 573-576.	1.7	35
189	Incremental Ca2+ mobilization by inositol trisphosphate receptors is unlikely to be mediated by their desensitization or regulation by luminal or cytosolic Ca2+. Biochemical Journal, 1997, 326, 215-220.	1.7	30
190	Chapter 9 Inositol 1,4,5-trisphosphate receptors. Principles of Medical Biology, 1997, , 157-168.	0.1	0
191	Disaccharide Polyphosphates Based upon Adenophostin A Activate Hepatic d-myo-Inositol 1,4,5-Trisphosphate Receptors. Biochemistry, 1997, 36, 12780-12790.	1.2	71
192	Cooperative activation of IP3 receptors by sequential binding of IP3 and Ca2+ safeguards against spontaneous activity. Current Biology, 1997, 7, 510-518.	1.8	150
193	Kinetic Analysis of Inositol Trisphosphate Binding to Pure Inositol Trisphosphate Receptors Using Scintillation Proximity Assay. Biochemical and Biophysical Research Communications, 1996, 221, 821-825.	1.0	15
194	Differentiation of BC3H1 smooth muscle cells changes the bivalent cation selectivity of the capacitative Ca2+ entry pathway. Biochemical Journal, 1996, 316, 759-764.	1.7	21
195	Measurement of changes in free Ca2+ in the intracellular stores of single permeabilised hepatocytes. Biology of the Cell, 1995, 84, 102-102.	0.7	0
196	STRUCTURE AND FUNCTION OF INOSITOL TRISPHOSPHATE RECEPTORS. , 1993, , 199-254.		2
197	Purification of the inositol1,4,5-trisphosphate receptor by heparin affinity chromatography using decavandate. Biochemical Society Transactions, 1992, 20, 135S-135S.	1.6	1
198	Calcium and inositol 1,4,5-triphosphate receptors: a complex relationship. Trends in Biochemical Sciences, 1992, 17, 403-407.	3.7	105

#	Article	IF	CITATIONS
199	Structure and function of inositol triphosphate receptors. , 1991, 51, 97-137.		154
200	Regulation of Ca2+ mobilization by Ins $(1,4,5)$ <i>P</i> 3 and intraluminal Ca2+ in permeabilized hepatocytes. Biochemical Society Transactions, 1991, 19, 206S-206S.	1.6	6
201	Solubilization of rat liver inositol 1,4,5-trisphosphate receptor. Cellular Signalling, 1991, 3, 607-612.	1.7	11
202	Spontaneous calcium release from inositol trisphosphate-sensitive calcium stores. Nature, 1991, 352, 241-244.	13.7	376
203	Receptor-regulated Ca2+ entry: secret pathway or secret messenger?. Trends in Pharmacological Sciences, 1990, 11, 269-271.	4.0	31
204	Phosphoinositide metabolism and control of cell proliferation., 1989,, 187-200.		1
205	DL-Myo-inositol 1,4,5-trisphosphorothioate mobilizes intracellular calcium in Swiss 3T3 cells and Xenopus oocytes. Biochemical and Biophysical Research Communications, 1988, 150, 626-632.	1.0	51
206	Guanine nucleotides stimulate hydrolysis of phosphatidylinositol and polyphosphoinositides in permeabilized Swiss 3T3 cells. FEBS Letters, 1988, 237, 163-167.	1.3	5
207	Time and space — novel aspects of hormone action. Trends in Pharmacological Sciences, 1988, 9, 43-45.	4.0	5
208	A stable analogue of inositol trisphosphate which mobilizes intracellular Ca2+. Biochemical Society Transactions, 1988, 16, 995-996.	1.6	6
209	Calcium Regulation in Insects. Advances in Insect Physiology, 1987, , 155-186.	1.1	20
210	Receptor regulation of calcium entry. Trends in Pharmacological Sciences, 1987, 8, 79-80.	4.0	24
211	A Role for G Proteins in the Action of Ca2+-Mobilizing Hormones. Annals of the New York Academy of Sciences, 1987, 494, 162-164.	1.8	0
212	A guanine nucleotide-dependent regulatory protein couples substance P receptors to phospholipase C in rat parotid gland. Biochemical and Biophysical Research Communications, 1986, 136, 362-368.	1.0	98
213	Receptor coupling to polyphosphoinositide turnover: a parallel with the adenylate cyclase system. Trends in Pharmacological Sciences, 1986, 7, 238-242.	4.0	134
214	Growth factors control a network of interacting messengers. Trends in Pharmacological Sciences, 1986, 7, 467-471.	4.0	9
215	Effects of protein kinase C and calcium on receptor-regulated formation of isomers of inositol trisphosphate. Biochemical Society Transactions, 1986, 14, 1018-1018.	1.6	0
216	A G protein couples receptors to phospholipase C in exocrine pancreas and parotid glands. Biochemical Society Transactions, 1986, 14, 1017-1017.	1.6	1

#	Article	IF	CITATIONS
217	Calcium regulation in vertebrates: An overview. Comparative Biochemistry and Physiology A, Comparative Physiology, 1985, 82, 249-255.	0.7	30
218	Calcium Absorption by the Midgut of the Blowfly, Calliphora Vicina. Journal of Experimental Biology, 1985, 114, 551-561.	0.8	11
219	Transcellular calcium transport by midgut of the blowfly, Calliphoravicina. Cell Calcium, 1984, 5, 377-390.	1.1	4
220	Calcium distribution during egg development in Calliphora vicina. Journal of Insect Physiology, 1984, 30, 905-910.	0.9	7
221	Regulation of IP 3 Receptors by IP 3 and Ca 2+. Lecture Notes in Physics, 0, , 1-16.	0.3	2