Linda S Wicker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1327001/publications.pdf Version: 2024-02-01

		36203	28224
131	11,914	51	105
papers	citations	h-index	g-index
139	139	139	11672
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature, 2003, 423, 506-511.	13.7	1,980
2	Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nature Genetics, 2007, 39, 857-864.	9.4	1,324
3	Genetic analysis of autoimmune type 1 diabetes mellitus in mice. Nature, 1991, 351, 542-547.	13.7	513
4	Large-scale genetic fine mapping and genotype-phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. Nature Genetics, 2007, 39, 1074-1082.	9.4	380
5	Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity. Nature Genetics, 2007, 39, 329-337.	9.4	333
6	Photochemical preparation of a pyridone containing tetracycle: A jak protein kinase inhibitor. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1219-1223.	1.0	263
7	A Type I Interferon Transcriptional Signature Precedes Autoimmunity in Children Genetically at Risk for Type 1 Diabetes. Diabetes, 2014, 63, 2538-2550.	0.3	261
8	Cell-specific protein phenotypes for the autoimmune locus IL2RA using a genotype-selectable human bioresource. Nature Genetics, 2009, 41, 1011-1015.	9.4	249
9	Liver Autoimmunity Triggered by Microbial Activation of Natural Killer T Cells. Cell Host and Microbe, 2008, 3, 304-315.	5.1	219
10	IL2RA Genetic Heterogeneity in Multiple Sclerosis and Type 1 Diabetes Susceptibility and Soluble Interleukin-2 Receptor Production. PLoS Genetics, 2009, 5, e1000322.	1.5	210
11	An Autoimmune Disease-Associated CTLA-4 Splice Variant Lacking the B7 Binding Domain Signals Negatively in T Cells. Immunity, 2004, 20, 563-575.	6.6	197
12	Type 1 Diabetes-Associated <i>IL2RA</i> Variation Lowers IL-2 Signaling and Contributes to Diminished CD4+CD25+ Regulatory T Cell Function. Journal of Immunology, 2012, 188, 4644-4653.	0.4	187
13	Genetic Protection from the Inflammatory Disease Type 1 Diabetes in Humans and Animal Models. Immunity, 2001, 15, 387-395.	6.6	186
14	Type 1 diabetes in mice is linked to the interleukin-1 receptor and Lsh/lty/Bcg genes on chromosome 1. Nature, 1991, 353, 262-265.	13.7	181
15	NOD.c3c4 congenic mice develop autoimmune biliary disease that serologically and pathogenetically models human primary biliary cirrhosis. Journal of Experimental Medicine, 2006, 203, 1209-1219.	4.2	173
16	The NOD Idd9 Genetic Interval Influences the Pathogenicity of Insulitis and Contains Molecular Variants of Cd30, Tnfr2, and Cd137. Immunity, 2000, 13, 107-115.	6.6	153
17	Suppression of B cell activation by cyclosporin A, FK506 and rapamycin. European Journal of Immunology, 1990, 20, 2277-2283.	1.6	151
18	Antibody-mediated blockade of the CXCR3 chemokine receptor results in diminished recruitment of T helper 1 cells into sites of inflammation. Journal of Leukocyte Biology, 2003, 73, 771-780.	1.5	146

#	Article	IF	CITATIONS
19	Type 1 diabetes genes and pathways shared by humans and NOD mice. Journal of Autoimmunity, 2005, 25, 29-33.	3.0	145
20	Fine-mapping, trans-ancestral and genomic analyses identify causal variants, cells, genes and drug targets for type 1 diabetes. Nature Genetics, 2021, 53, 962-971.	9.4	133
21	Genetic Control of Susceptibility to <i>Cryptococcus neoformans</i> in Mice. Infection and Immunity, 1980, 29, 494-499.	1.0	131
22	A long-lived IL-2 mutein that selectively activates and expands regulatory T cells as a therapy for autoimmune disease. Journal of Autoimmunity, 2018, 95, 1-14.	3.0	129
23	QTL influencing autoimmune diabetes and encephalomyelitis map to a 0.15-cM region containing II2. Nature Genetics, 1999, 21, 158-160.	9.4	127
24	Congenic Mapping of the Type 1 Diabetes Locus, Idd3, to a 780-kb Region of Mouse Chromosome 3: Identification of a Candidate Segment of Ancestral DNA by Haplotype Mapping. Genome Research, 2000, 10, 446-453.	2.4	126
25	THE ROLE OF CD4+ HELPER T CELLS IN THE DESTRUCTION OF MICROENCAPSULATED ISLET XENOGRAFTS IN NOD MICE. Transplantation, 1990, 49, 396-403.	0.5	122
26	In vivo RNA interference demonstrates a role for Nramp1 in modifying susceptibility to type 1 diabetes. Nature Genetics, 2006, 38, 479-483.	9.4	118
27	Regulatory T Cell Responses in Participants with Type 1 Diabetes after a Single Dose of Interleukin-2: A Non-Randomised, Open Label, Adaptive Dose-Finding Trial. PLoS Medicine, 2016, 13, e1002139.	3.9	117
28	IL-21 production by CD4+ effector T cells and frequency of circulating follicular helper T cells are increased in type 1 diabetes patients. Diabetologia, 2015, 58, 781-790.	2.9	116
29	Genetic susceptibility to type 1 diabetes. Current Opinion in Immunology, 2005, 17, 601-608.	2.4	108
30	Fine Mapping, Gene Content, Comparative Sequencing, and Expression Analyses Support <i>Ctla4</i> and <i>Nramp1</i> as Candidates for <i>Idd5.1</i> and <i>Idd5.2</i> in the Nonobese Diabetic Mouse. Journal of Immunology, 2004, 173, 164-173.	0.4	102
31	PTPN22 Alters the Development of Regulatory T Cells in the Thymus. Journal of Immunology, 2012, 188, 5267-5275.	0.4	99
32	Genetic Control of Autoimmunity: Protection from Diabetes, but Spontaneous Autoimmune Biliary Disease in a Nonobese Diabetic Congenic Strain. Journal of Immunology, 2004, 173, 2315-2323.	0.4	88
33	Sustained inÂvivo signaling by long-lived IL-2 induces prolonged increases of regulatory T cells. Journal of Autoimmunity, 2015, 56, 66-80.	3.0	87
34	Combining mouse congenic strains and microarray gene expression analyses to study a complex trait: the NOD model of type 1 diabetes. Genome Research, 2002, 12, 232-43.	2.4	81
35	Resistance ofH-2 heterozygous mice to parental tumors. Immunogenetics, 1977, 4, 601-607.	1.2	80
36	The Soluble CTLA-4 Splice Variant Protects From Type 1 Diabetes and Potentiates Regulatory T-Cell Function. Diabetes, 2011, 60, 1955-1963.	0.3	79

#	Article	IF	CITATIONS
37	Cells with Treg-specific FOXP3 demethylation but low CD25 are prevalent in autoimmunity. Journal of Autoimmunity, 2017, 84, 75-86.	3.0	78
38	Immunological focusing by the mouse major histocompatibility complex: Mouse strains confronted with distantly related lysozymes confine their attention to very few epitopes. European Journal of Immunology, 1982, 12, 535-540.	1.6	74
39	Statistical Modeling of Interlocus Interactions in a Complex Disease: Rejection of the Multiplicative Model of Epistasis in Type 1 Diabetes. Genetics, 2001, 158, 357-367.	1.2	72
40	Chromosome contacts in activated T cells identify autoimmune disease candidate genes. Genome Biology, 2017, 18, 165.	3.8	68
41	Genetic Disassociation of Autoimmunity and Resistance to Costimulation Blockade-Induced Transplantation Tolerance in Nonobese Diabetic Mice. Journal of Immunology, 2003, 171, 185-195.	0.4	67
42	DIFFERENTIAL GLYCOSYLATION OF INTERLEUKIN 2, THE MOLECULAR BASIS FOR THE NOD Idd3 TYPE 1 DIABETES GENE?. Cytokine, 2000, 12, 477-482.	1.4	66
43	Chapter 6 Gene–Gene Interactions in the NOD Mouse Model of Type 1 Diabetes. Advances in Immunology, 2008, 100, 151-175.	1.1	65
44	Genetic Evidence That the Differential Expression of the Ligand-Independent Isoform of CTLA-4 Is the Molecular Basis of the <i>Idd5.1</i> Type 1 Diabetes Region in Nonobese Diabetic Mice. Journal of Immunology, 2009, 183, 5146-5157.	0.4	65
45	The IL-2/CD25 Pathway Determines Susceptibility to T1D in Humans and NOD Mice. Journal of Clinical Immunology, 2008, 28, 685-696.	2.0	62
46	Discovery of CD80 and CD86 as recent activation markers on regulatory T cells by protein-RNA single-cell analysis. Genome Medicine, 2020, 12, 55.	3.6	61
47	Postthymic Expansion in Human CD4 Naive T Cells Defined by Expression of Functional High-Affinity IL-2 Receptors. Journal of Immunology, 2013, 190, 2554-2566.	0.4	60
48	Genetic Variants Predisposing Most Strongly to Type 1 Diabetes Diagnosed Under Age 7 Years Lie Near Candidate Genes That Function in the Immune System and in Pancreatic β-Cells. Diabetes Care, 2020, 43, 169-177.	4.3	60
49	Immunodominant protein epitopes I. Induction of suppression to hen egg white lysozyme is obliterated by removal of the first three N-terminal amino acids. European Journal of Immunology, 1984, 14, 442-447.	1.6	58
50	The Diabetes Susceptibility Locus Idd5.1 on Mouse Chromosome 1 Regulates ICOS Expression and Modulates Murine Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2004, 173, 157-163.	0.4	57
51	Allelic variant in <i>CTLA4</i> alters T cell phosphorylation patterns. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18607-18612.	3.3	57
52	Dissection of a Complex Disease Susceptibility Region Using a Bayesian Stochastic Search Approach to Fine Mapping. PLoS Genetics, 2015, 11, e1005272.	1.5	55
53	Genetic and functional association of the immune signaling molecule 4-1BB (CD137/TNFRSF9) with type 1 diabetes. Journal of Autoimmunity, 2005, 25, 13-20.	3.0	54
54	Interactions between <i>Idd5.1/Ctla4</i> and Other Type 1 Diabetes Genes. Journal of Immunology, 2007, 179, 8341-8349.	0.4	54

#	Article	IF	CITATIONS
55	Blockade of the Programmed Death-1 (PD1) Pathway Undermines Potent Genetic Protection from Type 1 Diabetes. PLoS ONE, 2014, 9, e89561.	1.1	54
56	NOD Congenic Mice Genetically Protected From Autoimmune Diabetes Remain Resistant to Transplantation Tolerance Induction. Diabetes, 2003, 52, 321-326.	0.3	52
57	IL-2 and its high-affinity receptor: Genetic control of immunoregulation and autoimmunity. Seminars in Immunology, 2009, 21, 363-371.	2.7	52
58	Insulin Autoantibodies Are Associated With Islet Inflammation But Not Always Related to Diabetes Progression in NOD Congenic Mice. Diabetes, 2003, 52, 882-886.	0.3	47
59	The Derivation of Highly Germline-Competent Embryonic Stem Cells Containing NOD-Derived Genome. Diabetes, 2003, 52, 205-208.	0.3	47
60	Natural Variation in Interleukin-2 Sensitivity Influences Regulatory T-Cell Frequency and Function in Individuals With Long-standing Type 1 Diabetes. Diabetes, 2015, 64, 3891-3902.	0.3	46
61	Neonatal and adult recent thymic emigrants produce IL-8 and express complement receptors CR1 and CR2. JCI Insight, 2017, 2, .	2.3	46
62	CD8 T Cells Mediate Direct Biliary Ductule Damage in Nonobese Diabetic Autoimmune Biliary Disease. Journal of Immunology, 2011, 186, 1259-1267.	0.4	44
63	Major Histocompatibility Complex–linked Control of Autoimmunity. Journal of Experimental Medicine, 1997, 186, 973-975.	4.2	43
64	Slc11a1 Enhances the Autoimmune Diabetogenic T-Cell Response by Altering Processing and Presentation of Pancreatic Islet Antigens. Diabetes, 2009, 58, 156-164.	0.3	39
65	The B10 <i>Idd9.3</i> Locus Mediates Accumulation of Functionally Superior CD137+ Regulatory T Cells in the Nonobese Diabetic Type 1 Diabetes Model. Journal of Immunology, 2012, 189, 5001-5015.	0.4	36
66	The plasma biomarker soluble SIGLEC-1 is associated with the type I interferon transcriptional signature, ethnic background and renal disease in systemic lupus erythematosus. Arthritis Research and Therapy, 2018, 20, 152.	1.6	36
67	CD8+ T Cell Tolerance in Nonobese Diabetic Mice Is Restored by Insulin-Dependent Diabetes Resistance Alleles. Journal of Immunology, 2005, 175, 1677-1685.	0.4	33
68	Expression of Diabetes-Associated Genes by Dendritic Cells and CD4 T Cells Drives the Loss of Tolerance in Nonobese Diabetic Mice. Journal of Immunology, 2009, 183, 1533-1541.	0.4	33
69	Rationale and study design of the Adaptive study of IL-2 dose on regulatory T cells in type 1 diabetes (DILT1D): a non-randomised, open label, adaptive dose finding trial. BMJ Open, 2014, 4, e005559-e005559.	0.8	33
70	<i>Idd9.1</i> Locus Controls the Suppressive Activity of FoxP3+CD4+CD25+ Regulatory T-Cells. Diabetes, 2010, 59, 272-281.	0.3	31
71	Chronic Immune Activation in Systemic Lupus Erythematosus and the Autoimmune PTPN22 Trp620 Risk Allele Drive the Expansion of FOXP3+ Regulatory T Cells and PD-1 Expression. Frontiers in Immunology, 2019, 10, 2606.	2.2	31
72	ldentification of <i>Cd101</i> as a Susceptibility Gene for <i>Novosphingobium aromaticivorans</i> -Induced Liver Autoimmunity. Journal of Immunology, 2011, 187, 337-349.	0.4	30

#	Article	IF	CITATIONS
73	Investigation of Soluble and Transmembrane CTLA-4 Isoforms in Serum and Microvesicles. Journal of Immunology, 2014, 193, 889-900.	0.4	30
74	Genes within the Idd5 and Idd9/11 Diabetes Susceptibility Loci Affect the Pathogenic Activity of B Cells in Nonobese Diabetic Mice. Journal of Immunology, 2006, 177, 7033-7041.	0.4	29
75	Nonobese Diabetic Congenic Strain Analysis of Autoimmune Diabetes Reveals Genetic Complexity of the Idd18 Locus and Identifies Vav3 as a Candidate Gene. Journal of Immunology, 2010, 184, 5075-5084.	0.4	29
76	The DILfrequency study is an adaptive trial to identify optimal IL-2 dosing in patients with type 1 diabetes. JCI Insight, 2018, 3, .	2.3	29
77	Identification of a Structurally Distinct CD101 Molecule Encoded in the 950-kb Idd10 Region of NOD Mice. Diabetes, 2003, 52, 1551-1556.	0.3	27
78	New tools for defining the 'genetic background' of inbred mouse strains. Nature Immunology, 2007, 8, 669-673.	7.0	27
79	Multiplexed immunophenotyping of human antigen-presenting cells in whole blood by polychromatic flow cytometry. Nature Protocols, 2010, 5, 357-370.	5.5	27
80	Human IL-6R hi TIGIT â^ CD4 + CD127 low CD25 + T cells display potent in vitro suppressive capacity and a distinct Th17 profile. Clinical Immunology, 2017, 179, 25-39.	1.4	27
81	Responses of NOD Congenic Mice to a Clutamic Acid Decarboxylase-derived Peptide. Journal of Autoimmunity, 1994, 7, 635-641.	3.0	26
82	Commonality in the genetic control of TypeÂ1 diabetes in humans and NOD mice: variants of genes in the IL-2 pathway are associated with autoimmune diabetes in both species. Biochemical Society Transactions, 2008, 36, 312-315.	1.6	26
83	Evidence that <i>Cd101</i> Is an Autoimmune Diabetes Gene in Nonobese Diabetic Mice. Journal of Immunology, 2011, 187, 325-336.	0.4	26
84	Epigenetic analysis of regulatory T cells using multiplex bisulfite sequencing. European Journal of Immunology, 2015, 45, 3200-3203.	1.6	26
85	Immunodominant protein epitopes II. The primary antibody response to hen egg white lysozyme requires and focuses upon a unique N-terminal epitope. European Journal of Immunology, 1984, 14, 447-453.	1.6	25
86	Islet Cell Autoimmunity and Transplantation Tolerance: Two Distinct Mechanisms?. Annals of the New York Academy of Sciences, 2003, 1005, 148-156.	1.8	25
87	Overexpression of the CTLA-4 Isoform Lacking Exons 2 and 3 Causes Autoimmunity. Journal of Immunology, 2012, 188, 155-162.	0.4	25
88	Autoimmune Diabetes and Resistance to Xenograft Transplantation Tolerance in NOD Mice. Diabetes, 2005, 54, 107-115.	0.3	24
89	<i>Idd9.2</i> and <i>Idd9.3</i> Protective Alleles Function in CD4+ T-Cells and Nonlymphoid Cells to Prevent Expansion of Pathogenic Islet-Specific CD8+ T-Cells. Diabetes, 2010, 59, 1478-1486.	0.3	24
90	Stochastic search and joint fine-mapping increases accuracy and identifies previously unreported associations in immune-mediated diseases. Nature Communications, 2019, 10, 3216.	5.8	24

6

#	Article	IF	CITATIONS
91	Microbial transformation of immunosuppressive compounds. I. Desmethylation of FK 506 and immunomycin (FR 900520) by Actinoplanes sp. ATCC 53771 Journal of Antibiotics, 1992, 45, 118-123.	1.0	23
92	B cells promote hepatic inflammation, biliary cyst formation, and salivary gland inflammation in the NOD.c3c4 model of autoimmune cholangitis. Cellular Immunology, 2011, 268, 16-23.	1.4	22
93	Islet Allograft Survival Induced by Costimulation Blockade in NOD Mice Is Controlled by Allelic Variants of Idd3. Diabetes, 2004, 53, 1972-1978.	0.3	21
94	Genome-Wide Microarray Expression Analysis of CD4+ T Cells from Nonobese Diabetic Congenic Mice Identifies <i>Cd55</i> (<i>Daf1</i>) and <i>Acadl</i> as Candidate Genes for Type 1 Diabetes. Journal of Immunology, 2008, 180, 1071-1079.	0.4	21
95	Large, activated B cells are the primary B-cell target of 8-bromoguanosine and 8-mercaptoguanosine. Cellular Immunology, 1987, 106, 318-329.	1.4	20
96	Protocol of the adaptive study of IL-2 dose frequency on regulatory T cells in type 1 diabetes (DILfrequency): a mechanistic, non-randomised, repeat dose, open-label, response-adaptive study. BMJ Open, 2015, 5, e009799.	0.8	20
97	Linkage analysis of 84 microsatellite markers in intra- and interspecific backcrosses. Mammalian Genome, 1992, 3, 457-460.	1.0	19
98	Therapeutically expanded human regulatory T-cells are super-suppressive due to HIF1A induced expression of CD73. Communications Biology, 2021, 4, 1186.	2.0	19
99	Two distinct high immune response phenotypes are both controlled byH-2 genes mapping inK orl-A. Immunogenetics, 1981, 12, 253-265.	1.2	18
100	Genetic Interactions among <i>ldd3</i> , <i>ldd5.1</i> , <i>ldd5.2</i> , and <i>ldd5.3</i> Protective Loci in the Nonobese Diabetic Mouse Model of Type 1 Diabetes. Journal of Immunology, 2013, 190, 3109-3120.	0.4	16
101	Interleukin-2 Therapy of Autoimmunity in Diabetes (ITAD): a phase 2, multicentre, double-blind, randomized, placebo-controlled trial. Wellcome Open Research, 2020, 5, 49.	0.9	16
102	Idd Loci Synergize to Prolong Islet Allograft Survival Induced by Costimulation Blockade in NOD Mice. Diabetes, 2009, 58, 165-173.	0.3	14
103	Genome-wide end-sequenced BAC resources for the NOD/MrkTacâ~† and NOD/ShiLtJâ~†â~† mouse genomes. Genomics, 2010, 95, 105-110.	1.3	14
104	Capturing the systemic immune signature of a norovirus infection: an n-of-1 case study within a clinical trial. Wellcome Open Research, 2017, 2, 28.	0.9	14
105	Fine mapping of type 1 diabetes regions Idd9.1 and Idd9.2 reveals genetic complexity. Mammalian Genome, 2013, 24, 358-375.	1.0	13
106	NKG2D-RAE-1 Receptor-Ligand Variation Does Not Account for the NK Cell Defect in Nonobese Diabetic Mice. Journal of Immunology, 2008, 181, 7073-7080.	0.4	12
107	Amino acid polymorphisms altering the glycosylation of IL-2 do not protect from type 1 diabetes in the NOD mouse. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11236-11240.	3.3	12
108	Circulating C-Peptide Levels in Living Children and Young People and Pancreatic Î ² -Cell Loss in Pancreas Donors Across Type 1 Diabetes Disease Duration. Diabetes, 2022, 71, 1591-1596.	0.3	12

#	Article	IF	CITATIONS
109	5-Halo-6-phenyl pyrimidinones and 8-substituted guanosines: Biological response modifiers with similar effects on B cells. Cellular Immunology, 1988, 112, 156-165.	1.4	11
110	The Use of Idd Congenic Mice to Identify Checkpoints of Peripheral Tolerance to Islet Antigen. Annals of the New York Academy of Sciences, 2007, 1103, 118-127.	1.8	11
111	Ptpn22 and Cd2 Variations Are Associated with Altered Protein Expression and Susceptibility to Type 1 Diabetes in Nonobese Diabetic Mice. Journal of Immunology, 2015, 195, 4841-4852.	0.4	10
112	A Novel <i>Pkhd1</i> Mutation Interacts with the Nonobese Diabetic Genetic Background To Cause Autoimmune Cholangitis. Journal of Immunology, 2018, 200, 147-162.	0.4	10
113	Acquired allo-tolerance to major or minor histocompatibility antigens indifferently contributes to preventing diabetes development in non-obese diabetic (NOD) mice. Journal of Autoimmunity, 1992, 5, 591-601.	3.0	9
114	SAR for MHC class II binding tetrapeptides: Correlation with potential binding site. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 19-24.	1.0	9
115	A 20-Mb Region of Chromosome 4 Controls TNF-α-Mediated CD8+ T Cell Aggression Toward β Cells in Type 1 Diabetes. Journal of Immunology, 2006, 177, 5105-5114.	0.4	9
116	The Design of Regulatory Circuitry: Predominant Idiotypy and the Idea of Regulatory Parsimony. Annals of the New York Academy of Sciences, 1983, 418, 198-205.	1.8	8
117	The murine type 1 diabetes loci, Idd1, Idd3, Idd5, Idd9, and Idd17/10/18, do not control thymic CD4 â^' CD8 â^' /TCRαβ + deficiency in the nonobese diabetic mouse. Mammalian Genome, 2001, 12, 175-176.	1.0	8
118	In-depth immunophenotyping data of IL-6R on the human peripheral regulatory T cell (Treg) compartment. Data in Brief, 2017, 12, 676-691.	0.5	8
119	Genetic and functional data identifying Cd101 as a type 1 diabetes (T1D) susceptibility gene in nonobese diabetic (NOD) mice. PLoS Genetics, 2019, 15, e1008178.	1.5	8
120	Autoimmunity. Current Opinion in Immunology, 1995, 7, 783-785.	2.4	7
121	Cellular Mechanisms of Restored Â-Cell Tolerance Mediated by Protective Alleles of Idd3 and Idd5. Diabetes, 2012, 61, 166-174.	0.3	7
122	Hierarchy ofH-2 haplotypes governs inheritance of immune responsiveness to TNP-MSA. Immunogenetics, 1980, 10, 235-246.	1.2	6
123	Microbial transformation of immunosuppressive compounds. II. Specific desmethylation of 13-methoxy group of FK 506 and FR 900520 by Actinomycete sp. ATCC 53828 Journal of Antibiotics, 1992, 45, 577-580.	1.0	6
124	Natural Genetic Variants Influencing Type 1 Diabetes in Humans and in the NOD Mouse. Novartis Foundation Symposium, 2008, 267, 57-75.	1.2	6
125	Single-cell multi-omics analysis reveals IFN-driven alterations in T lymphocytes and natural killer cells in systemic lupus erythematosus. Wellcome Open Research, 2021, 6, 149.	0.9	6
126	Capturing the systemic immune signature of a norovirus infection: an n-of-1 case study within a clinical trial. Wellcome Open Research, 0, 2, 28.	0.9	6

#	Article	IF	CITATIONS
127	Regulation of T15 idiotype dominance. Cellular Immunology, 1986, 100, 570-576.	1.4	4
128	Tetrapeptide derived inhibitors of complexation of a class II MHC: the peptide backbone is not inviolate. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 2109-2114.	1.0	4
129	Genetic separation of the transplantation tolerance and autoimmune phenotypes in NOD mice. Reviews in Endocrine and Metabolic Disorders, 2003, 4, 255-261.	2.6	4
130	Genome-Wide Transcriptional Analyses of Islet-Specific CD4+ T Cells Identify Idd9 Genes Controlling Diabetogenic T Cell Function. Journal of Immunology, 2015, 194, 2654-2663.	0.4	3
131	MHC-Linked Diabetogenic Gene in the NOD Mouse Is Not Absolutely Recessive. Annals of the New York Academy of Sciences, 1988, 546, 240-241.	1.8	1