
Noe B Mercado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1326373/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature, 2021, 590, 630-634.	13.7	995
2	DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science, 2020, 369, 806-811.	6.0	978
3	Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature, 2020, 584, 443-449.	13.7	956
4	SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science, 2020, 369, 812-817.	6.0	789
5	Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature, 2020, 586, 583-588.	13.7	765
6	Protective efficacy of multiple vaccine platforms against Zika virus challenge in rhesus monkeys. Science, 2016, 353, 1129-1132.	6.0	461
7	Vaccine protection against Zika virus from Brazil. Nature, 2016, 536, 474-478.	13.7	460
8	Ad26 vaccine protects against SARS-CoV-2 severe clinical disease in hamsters. Nature Medicine, 2020, 26, 1694-1700.	15.2	275
9	Antibody and TLR7 agonist delay viral rebound in SHIV-infected monkeys. Nature, 2018, 563, 360-364.	13.7	246
10	Durability and correlates of vaccine protection against Zika virus in rhesus monkeys. Science Translational Medicine, 2017, 9, .	5.8	108
11	Protection against a mixed SHIV challenge by a broadly neutralizing antibody cocktail. Science Translational Medicine, 2017, 9, .	5.8	106
12	Comparison of Subgenomic and Total RNA in SARS-CoV-2-Challenged Rhesus Macaques. Journal of Virology, 2021, 95, .	1.5	87
13	Optimization of non-coding regions for a non-modified mRNA COVID-19 vaccine. Nature, 2022, 601, 410-414.	13.7	71
14	Low-dose Ad26.COV2.S protection against SARS-CoV-2 challenge in rhesus macaques. Cell, 2021, 184, 3467-3473.e11.	13.5	49
15	Protective efficacy of Ad26.COV2.S against SARS-CoV-2 B.1.351 in macaques. Nature, 2021, 596, 423-427.	13.7	40
16	Feasibility and safety of ultrasound-guided minimally invasive autopsy in COVID-19 patients. Abdominal Radiology, 2021, 46, 1263-1271.	1.0	33
17	Immunity elicited by natural infection or Ad26.COV2.S vaccination protects hamsters against SARS-CoV-2 variants of concern. Science Translational Medicine, 2021, 13, eabj3789.	5.8	32
18	Lack of therapeutic efficacy of an antibody to α ₄ β ₇ in SIVmac251-infected rhesus macaques. Science, 2019, 365, 1029-1033.	6.0	31

NOE B MERCADO

#	Article	IF	CITATIONS
19	SARS-CoV-2 receptor binding domain displayed on HBsAg virus–like particles elicits protective immunity in macaques. Science Advances, 2022, 8, eabl6015.	4.7	27
20	Persistence of viral RNA in lymph nodes in ART-suppressed SIV/SHIV-infected Rhesus Macaques. Nature Communications, 2021, 12, 1474.	5.8	26
21	Passive Transfer of Vaccine-Elicited Antibodies Protects against SIV in Rhesus Macaques. Cell, 2020, 183, 185-196.e14.	13.5	25
22	Rapid Cloning of Novel Rhesus Adenoviral Vaccine Vectors. Journal of Virology, 2018, 92, .	1.5	24
23	Therapeutic Efficacy of Vectored PGT121 Gene Delivery in HIV-1-Infected Humanized Mice. Journal of Virology, 2018, 92, .	1.5	24
24	SARS-CoV-2 binding and neutralizing antibody levels after Ad26.COV2.S vaccination predict durable protection in rhesus macaques. Nature Communications, 2021, 12, 5877.	5.8	21
25	Prior infection with SARS-CoV-2 WA1/2020 partially protects rhesus macaques against reinfection with B.1.1.7 and B.1.351 variants. Science Translational Medicine, 2021, 13, eabj2641.	5.8	15
26	Long-acting capsid inhibitor protects macaques from repeat SHIV challenges. Nature, 2022, 601, 612-616.	13.7	14
27	Defining the determinants of protection against SARS-CoV-2 infection and viral control in a dose-down Ad26.CoV2.S vaccine study in nonhuman primates. PLoS Biology, 2022, 20, e3001609.	2.6	14
28	Therapeutic efficacy of combined active and passive immunization in ART-suppressed, SHIV-infected rhesus macaques. Nature Communications, 2022, 13, .	5.8	12
29	Origin of rebound virus in chronically SIV-infected Rhesus monkeys following treatment discontinuation. Nature Communications, 2020, 11, 5412.	5.8	9
30	Increased IL-6 expression precedes reliable viral detection in the rhesus macaque brain during acute SIV infection. JCl Insight, 2021, 6, .	2.3	8
31	Impact of prior Dengue immunity on Zika vaccine protection in rhesus macaques and mice. PLoS Pathogens, 2021, 17, e1009673.	2.1	7
32	Differential Outcomes following Optimization of Simian-Human Immunodeficiency Viruses from Clades AE, B, and C. Journal of Virology, 2020, 94, .	1.5	5
33	Protective Efficacy of Gastrointestinal SARS-CoV-2 Delivery against Intranasal and Intratracheal SARS-CoV-2 Challenge in Rhesus Macaques. Journal of Virology, 2022, 96, JVI0159921.	1.5	5
34	Therapeutic efficacy of an Ad26/MVA vaccine with SIV gp140 protein and vesatolimod in ART-suppressed rhesus macaques. Npj Vaccines, 2022, 7, 53.	2.9	4
35	Reduced SARS-CoV-2 disease outcomes in Syrian hamsters receiving immune sera: Quantitative image analysis in pathologic assessments. Veterinary Pathology, 2022, , 030098582210957.	0.8	2