
Nunzio Cennamo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1326072/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exploiting Plasmonic Phenomena in Polymer Optical Fibers to Realize a Force Sensor. Sensors, 2022, 22, 2391.	3.8	13
2	An Optical Fiber Sensor System for Uranium Detection in Water. , 2022, 16, .		1
3	A Plasmonic Biosensor Based on Light-Diffusing Fibers Functionalized with Molecularly Imprinted Nanoparticles for Ultralow Sensing of Proteins. Nanomaterials, 2022, 12, 1400.	4.1	12
4	Effects of Magnetic Stimulation on Dental Implant Osseointegration: A Scoping Review. Applied Sciences (Switzerland), 2022, 12, 4496.	2.5	7
5	A Review of Apta-POF-Sensors: The Successful Coupling between Aptamers and Plastic Optical Fibers for Biosensing Applications. Applied Sciences (Switzerland), 2022, 12, 4584.	2.5	4
6	A Temperature Sensor Exploiting Plasmonic Phenomena Changes in Multimode POFs. IEEE Sensors Journal, 2022, 22, 12900-12905.	4.7	4
7	Molecularly Imprinted Polymers and Inkjet-Printer technology to develop Optical-Chemical Sensors. , 2022, , .		2
8	Magnetic Field Detection by an SPR Plastic Optical Fiber Sensor and Ferrofluids. Lecture Notes in Electrical Engineering, 2021, , 63-68.	0.4	0
9	Green LSPR Sensors Based on Thin Bacterial Cellulose Waveguides for Disposable Biosensor Implementation. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-8.	4.7	4
10	SPR-Optical Fiber-Molecularly Imprinted Polymer Sensor for the Detection of Furfural in Wine. Biosensors, 2021, 11, 72.	4.7	37
11	A review on simple and highly sensitive plastic optical fiber probes for bio-chemical sensing. Sensors and Actuators B: Chemical, 2021, 331, 129393.	7.8	61
12	Proof of Concept for a Quick and Highly Sensitive On-Site Detection of SARS-CoV-2 by Plasmonic Optical Fibers and Molecularly Imprinted Polymers. Sensors, 2021, 21, 1681.	3.8	70
13	Automatic traffic monitoring by <i>i+</i> -OTDR data and Hough transform in a real-field environment. Applied Optics, 2021, 60, 3579.	1.8	26
14	A Surface Plasmon Resonance Plastic Optical Fiber Biosensor for the Detection of Pancreatic Amylase in Surgically-Placed Drain Effluent. Sensors, 2021, 21, 3443.	3.8	14
15	Biosensors exploiting unconventional platforms: The case of plasmonic light-diffusing fibers. Sensors and Actuators B: Chemical, 2021, 337, 129771.	7.8	16
16	A Nanoplasmonic-Based Biosensing Approach for Wide-Range and Highly Sensitive Detection of Chemicals. Nanomaterials, 2021, 11, 1961.	4.1	8
17	Distributed Static and Dynamic Strain Measurements in Polymer Optical Fibers by Rayleigh Scattering. Sensors, 2021, 21, 5049.	3.8	5
18	Hybrid Brillouin/Rayleigh sensor for multiparameter measurements in optical fibers. Optics Express, 2021, 29, 24025.	3.4	15

#	Article	IF	CITATIONS
19	Biochemical sensing exploiting plasmonic sensors based on gold nanogratings and polymer optical fibers. Photonics Research, 2021, 9, 1397.	7.0	16
20	A Simple and Efficient Plasmonic Sensor in Light Diffusive Polymer Fibers. IEEE Sensors Journal, 2021, 21, 16054-16060.	4.7	11
21	Microstructured Surface Plasmon Resonance Sensor Based on Inkjet 3D Printing Using Photocurable Resins with Tailored Refractive Index. Polymers, 2021, 13, 2518.	4.5	19
22	Optical Measurements. IEEE Instrumentation and Measurement Magazine, 2021, 24, 3-4.	1.6	1
23	Bovine Serum Albumin Protein Detection by a Removable SPR Chip Combined with a Specific MIP Receptor. Chemosensors, 2021, 9, 218.	3.6	16
24	Chemical and Biological Applications Based on Plasmonic Optical Fiber Sensors. IEEE Instrumentation and Measurement Magazine, 2021, 24, 50-55.	1.6	5
25	Universal tool for surface plasmon resonance sensors realized in waveguides. , 2021, , .		0
26	The Role of Tapered Light-Diffusing Fibers in Plasmonic Sensor Configurations. Sensors, 2021, 21, 6333.	3.8	4
27	SARS-CoV-2 spike protein detection through a plasmonic D-shaped plastic optical fiber aptasensor. Talanta, 2021, 233, 122532.	5.5	91
28	A Magnetic Field Sensor Based on SPR-POF Platforms and Ferrofluids. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-10.	4.7	21
29	Distributed Acoustic Sensor for Liquid Detection Based on Optically Heated CO2+-Doped Fibers. Lecture Notes in Electrical Engineering, 2021, , 101-105.	0.4	0
30	Flexible and Ultrathin Metal-Oxide Films for Multiresonance-Based Sensors in Plastic Optical Fibers. ACS Applied Nano Materials, 2021, 4, 10902-10910.	5.0	10
31	(INVITED)Quantitative detection of SARS-CoV-2 virions in aqueous mediums by IoT optical fiber sensors. Results in Optics, 2021, 5, 100177.	2.0	9
32	A Molecularly Imprinted Polymer Based SPR Sensor for 2-Furaldehyde Determination in Oil Matrices. Applied Sciences (Switzerland), 2021, 11, 10390.	2.5	3
33	Optical Chemo-Sensors for Specific Markers in Transformer Insulating Oil Exploiting Molecularly Imprinted Polymers and Plasmonic Optical Fibers. Engineering Proceedings, 2021, 11, .	0.4	0
34	Aptamer-Based Plasmonic Plastic Optical Fiber Biosensors: A Focus on Relevant Applications. Engineering Proceedings, 2021, 11, .	0.4	0
35	A Wearable Temperature Sensor Network to Address the COVID-19 Pandemic Emergency. , 2021, 11, .		0

36 Surface Plasmon Resonance Sensor Based on Inkjet 3D Printing., 2021, 11, .

#	Article	lF	CITATIONS
37	On the Effect of Soft Molecularly Imprinted Nanoparticles Receptors Combined to Nanoplasmonic Probes for Biomedical Applications. Frontiers in Bioengineering and Biotechnology, 2021, 9, 801489.	4.1	11
38	Single drop detection of furfural in wine by an SPR sensor based on molecularly imprinted polymer as biomimetic receptor. , 2020, , .		0
39	Plastic Optical Fiber Sensors and Magnetic Fluids: Plasmonic Tunability and Sensing properties for Measurements. , 2020, , .		0
40	Experimental Characterization of Plasmonic Sensors Based on Lab-Built Tapered Plastic Optical Fibers. Applied Sciences (Switzerland), 2020, 10, 4389.	2.5	22
41	An LSPR Sensor based on a thin slab waveguide of bacterial cellulose. , 2020, , .		1
42	Frequency dielectric spectroscopy and an innovative optical sensor to assess oil-paper degradation. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27, 1728-1735.	2.9	5
43	Towards Plastic Optical Fiber Magnetic Field Sensors exploiting Magnetic Fluids and Multimode SPR-POF platforms. , 2020, , .		3
44	Toward Smart Selective Sensors Exploiting a Novel Approach to Connect Optical Fiber Biosensors in Internet. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 8009-8019.	4.7	9
45	A C-OTDR Sensor for Liquid Detection Based on Optically Heated Co ²⁺ -Doped Fibers. IEEE Sensors Journal, 2020, 20, 10154-10158.	4.7	4
46	A portable optical-fibre-based surface plasmon resonance biosensor for the detection of therapeutic antibodies in human serum. Scientific Reports, 2020, 10, 11154.	3.3	82
47	Polymer Optical Fibers for Sensing. Macromolecular Symposia, 2020, 389, 1900074.	0.7	11
48	Deformable molecularly imprinted nanogels permit sensitivity-gain in plasmonic sensing. Biosensors and Bioelectronics, 2020, 156, 112126.	10.1	21
49	Molecularly Imprinted Polymers and Optical Fiber Sensors for Security Applications. Springer Proceedings in Materials, 2020, , 17-24.	0.3	5
50	Measurement of MIPs Responses Deposited on Two SPR-POF Sensors Realized by Different Photoresist Buffer Layers. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 1464-1473.	4.7	9
51	Environmental Monitoring Exploiting Optical Fiber Biosensors. The Case of Naphthalene Detection in Water. Lecture Notes in Electrical Engineering, 2020, , 65-69.	0.4	1
52	Optical Chemical Sensing Exploiting Inkjet Printing Technology and Molecularly Imprinted Polymers. Lecture Notes in Electrical Engineering, 2020, , 71-74.	0.4	0
53	Sensing of Copper(II) by Immobilized Ligands: Comparison of Electrochemical and Surface Plasmon Resonance Transduction. Proceedings (mdpi), 2019, 15, .	0.2	1
54	Toward an optical monitoring of chemical markers in transformers insulating oil. , 2019, , .		1

#	Article	IF	CITATIONS
55	Effect of the photoresist aging in D-shaped POF SPR Sensors for biochemical applications. , 2019, , .		1
56	D-Shaped POF Sensors for Refractive Index Sensing—The Importance of Surface Roughness. Sensors, 2019, 19, 2476.	3.8	30
57	A Novel Approach to Realizing Low-Cost Plasmonic Optical Fiber Sensors: Light-Diffusing Fibers Covered by Thin Metal Films. Fibers, 2019, 7, 34.	4.0	13
58	Sensing by Molecularly Imprinted Polymer: Evaluation of the Binding Properties with Different Techniques. Sensors, 2019, 19, 1344.	3.8	17
59	A Novel Sensing Methodology to Detect Furfural in Water, Exploiting MIPs, and Inkjet-Printed Optical Waveguides. IEEE Transactions on Instrumentation and Measurement, 2019, 68, 1582-1589.	4.7	21
60	Exploiting Several Buffer Layers in SPR D-Shaped POF Sensors Based on Gold Film for Different Applications. Proceedings (mdpi), 2019, 15, 47.	0.2	0
61	Low-Cost Medical Diagnostics Exploiting Different Kinds of Receptors on Plasmonic Plastic Optical Fiber Sensors. , 2019, , .		Ο
62	Novel Approaches to Realize Plasmonic Intrinsic and Extrinsic Optical Fiber Sensors with High Sensitivity. , 2019, , .		1
63	Sensing of Furfural by Molecularly Imprinted Polymers on Plasmonic and Electrochemical Platforms. Proceedings (mdpi), 2019, 15, 48.	0.2	1
64	Water monitoring in smart cities exploiting plastic optical fibers and molecularly imprinted polymers. The case of PFBS detection. , 2019, , .		7
65	An Eco-Friendly Disposable Plasmonic Sensor Based on Bacterial Cellulose and Gold. Sensors, 2019, 19, 4894.	3.8	16
66	A Green Slab Waveguide for Plasmonic Sensors Based on Bacterial Cellulose. Proceedings (mdpi), 2019, 15, 36.	0.2	2
67	An Optical Fiber Chemical Sensor for the Detection of Copper(II) in Drinking Water. Sensors, 2019, 19, 5246.	3.8	34
68	D-shaped plastic optical fibre aptasensor for fast thrombin detection in nanomolar range. Scientific Reports, 2019, 9, 18740.	3.3	43
69	Detection of naphthalene in sea-water by a label-free plasmonic optical fiber biosensor. Talanta, 2019, 194, 289-297.	5.5	25
70	Extrinsic plasmonic optical fiber sensors based on POFs and bacterial cellulose slab waveguides. , 2019, , .		1
71	A Novel Intensity-Based Sensor Platform for Refractive Index Sensing. Lecture Notes in Electrical Engineering, 2019, , 269-273.	0.4	0
72	A Molecularly Imprinted Polymer on a Novel Surface Plasmon Resonance Sensor. Lecture Notes in Electrical Engineering, 2019, , 259-262.	0.4	0

#	Article	IF	CITATIONS
73	Plasmonic Sensing in D-Shaped POFs With Fluorescent Optical Fibers as Light Sources. IEEE Transactions on Instrumentation and Measurement, 2018, 67, 754-759.	4.7	19
74	Chemical Sensors Based on Surface Plasmon Resonance in a Plastic Optical Fiber for Multianalyte Detection in Oil-Filled Power Transformer. Lecture Notes in Electrical Engineering, 2018, , 128-134.	0.4	1
75	A High Sensitivity Biosensor to detect the presence of perfluorinated compounds in environment. Talanta, 2018, 178, 955-961.	5.5	57
76	Numerical Results on the Exploitation of Gold Nanostructures in Plastic Optical Fibers Based Plasmonic Sensors. Lecture Notes in Electrical Engineering, 2018, , 127-134.	0.4	0
77	Optical chemosensors for transformers'oil degradation monitoring:case studies. , 2018, , .		0
78	A Simple and Low-Cost Optical Fiber Intensity-Based Configuration for Perfluorinated Compounds in Water Solution. Sensors, 2018, 18, 3009.	3.8	38
79	Plasmonic Chemical and Biological Sensors based on plastic optical fibers. , 2018, , .		1
80	[INVITED] Slab plasmonic platforms combined with Plastic Optical Fibers and Molecularly Imprinted Polymers for chemical sensing. Optics and Laser Technology, 2018, 107, 484-490.	4.6	21
81	A novel chemical optical sensor based on molecularly imprinted polymer, optical fibers and inkjet printing technology. , 2018, , .		2
82	A Molecularly Imprinted Polymer on a Plasmonic Plastic Optical Fiber to Detect Perfluorinated Compounds in Water. Sensors, 2018, 18, 1836.	3.8	69
83	Optical chemical fiber sensor for the detection of perfluorinated compounds in water. , 2018, , .		2
84	Refractive Index Sensing through Surface Plasmon Resonance in Light-Diffusing Fibers. Applied Sciences (Switzerland), 2018, 8, 1172.	2.5	23
85	Surface Plasmon Resonance Sensor in Plastic Optical Fibers. Influence of the Mechanical Support Geometry on the Performances. Lecture Notes in Electrical Engineering, 2018, , 135-141.	0.4	0
86	An optical fiber intensity-based sensor configuration for the detection of PFOA in water. , 2018, , .		0
87	Towards the development of cascaded surface plasmon resonance POF sensors exploiting gold films and synthetic recognition elements for detection of contaminants in transformer oil. Sensing and Bio-Sensing Research, 2017, 13, 128-135.	4.2	11
88	Comparison of different photoresist buffer layers in SPR sensors based on D-shaped POF and gold film. , 2017, , .		5
89	An optical temperature sensor based on silicone and plastic optical fibers for biomedical applications. , 2017, , .		4
90	Intensity-based plastic optical fiber sensor with molecularly imprinted polymer sensitive layer. Sensors and Actuators B: Chemical, 2017, 241, 534-540.	7.8	23

#	Article	IF	CITATIONS
91	SPR based hybrid electro-optic biosensor platform: SPR-cell with side emitting plastic optical fiber. , 2017, , .		3
92	Analysis of SPR Sensors in d-Shaped POF Realized by Hand and Mechanical Polishing. Proceedings (mdpi), 2017, 1, 767.	0.2	0
93	Exploiting Optical Fibers and Slab Waveguides for a New Intensity-Based Refractometer. Proceedings (mdpi), 2017, 1, .	0.2	0
94	Slab Waveguide and Optical Fibers for Novel Plasmonic Sensor Configurations. Sensors, 2017, 17, 1488.	3.8	25
95	A novel configuration for bio-chemical sensors based on surface plasmon resonance. , 2017, , .		Ο
96	SPR Chemosensors Based on D-Shaped POFs and MIPs: Investigation on Optimal Thickness of the Buffer Layer. Proceedings (mdpi), 2017, 1, .	0.2	0
97	SPR based hybrid electro-optic biosensor for \hat{l}^2 -lactam antibiotics determination in water. , 2017, , .		3
98	A Complete Optical Sensor System Based on a POF-SPR Platform and a Thermo-Stabilized Flow Cell for Biochemical Applications. Sensors, 2016, 16, 196.	3.8	23
99	Refractive Index Sensing with D-Shaped Plastic Optical Fibers for Chemical and Biochemical Applications. Sensors, 2016, 16, 2119.	3.8	59
100	SPR-based plastic optical fibre biosensor for the detection of C-reactive protein in serum. Journal of Biophotonics, 2016, 9, 1077-1084.	2.3	73
101	Optimization of an Evanescent Field Sensor based on D-Shaped Plastic Optical Fiber for Chemical and Biochemical Sensing. Procedia Engineering, 2016, 168, 810-813.	1.2	4
102	Design of Surface Plasmon Resonance Sensor in Plastic Optical Fibers Based on Nano-antenna Arrays. Procedia Engineering, 2016, 168, 880-883.	1.2	6
103	Novel Optical Chemical Sensor Based on Molecularly Imprinted Polymer Inside a Trench Micro-machined in Double Plastic Optical Fiber. Procedia Engineering, 2016, 168, 363-366.	1.2	1
104	SPR Sensor Platform Based on a Novel Metal Bilayer Applied on D–Shaped Plastic Optical Fibers for Refractive Index Measurements in the Range 1.38–1.42. IEEE Sensors Journal, 2016, 16, 4822-4827.	4.7	31
105	Markers Detection in Transformer Oil by Plasmonic Chemical Sensor System Based on POF and MIPs. IEEE Sensors Journal, 2016, 16, 7663-7670.	4.7	56
106	Refractometers for different refractive index range by surface plasmon resonance sensors in multimode optical fibers with different metals. Proceedings of SPIE, 2016, , .	0.8	1
107	Thin metal bilayer for surface plasmon resonance sensors in a multimode plastic optical fiber: the case of palladium and gold metal films. , 2016, , .		0
108	Surface plasmon resonance in a D-shaped plastic optical fibre: Influence of gold layer thickness in monitoring molecularly imprinted polymers. , 2016, , .		3

#	Article	IF	CITATIONS
109	Augmented workplace for SPR sensor application. , 2016, , .		2
110	A thermo-stabilized flow cell for surface plasmon resonance sensors in D-shaped plastic optical fibers. Proceedings of SPIE, 2016, , .	0.8	0
111	A simple Arduino-based configuration for SPR sensors in plastic optical fibers. , 2015, , .		5
112	Easy to Use Plastic Optical Fiber-Based Biosensor for Detection of Butanal. PLoS ONE, 2015, 10, e0116770.	2.5	23
113	A multimode plastic optical fiber platform coupled with aptamer layer for cancer biomarkers detection. , 2015, , .		0
114	Monitoring of Low Levels of Furfural in Power Transformer Oil with a Sensor System Based on a POF-MIP Platform. Sensors, 2015, 15, 8499-8511.	3.8	66
115	An easy way to realize SPR aptasensor: A multimode plastic optical fiber platform for cancer biomarkers detection. Talanta, 2015, 140, 88-95.	5.5	102
116	Experimental results for characterization of a tapered plastic optical fiber sensor based on SPR. Proceedings of SPIE, 2015, , .	0.8	2
117	Modal Filtering for Optimized Surface Plasmon Resonance Sensing in Multimode Plastic Optical Fibers. IEEE Sensors Journal, 2015, 15, 6306-6312.	4.7	19
118	An optical platform for furfural detection in trasformer oil. , 2015, , .		2
119	Sensitive detection of 2,4,6-trinitrotoluene by tridimensional monitoring of molecularly imprinted polymer with optical fiber and five-branched gold nanostars. Sensors and Actuators B: Chemical, 2015, 208, 291-298.	7.8	63
120	Sensing platforms exploiting surface plasmon resonance in polymeric optical fibers for chemical and biochemical applications. , 2015, , .		1
121	Bio and Chemical Sensors Based on Surface Plasmon Resonance in a Plastic Optical Fiber. , 2014, , .		5
122	Combined Molecularly Imprinted Polymer and Surface Plasmon Resonance Transduction in Plastic Optical Fiber for Monitoring Oil-filled Power Transformers. Procedia Engineering, 2014, 87, 532-535.	1.2	4
123	A Simple Small Size and Low Cost Sensor Based on Surface Plasmon Resonance for Selective Detection of Fe(III). Sensors, 2014, 14, 4657-4671.	3.8	51
124	SPR sensors in POF: a new experimental configuration for extended refractive index range and better SNR. , 2014, , .		1
125	High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of l-nicotine. Sensors and Actuators B: Chemical, 2014, 191, 529-536.	7.8	168

126 Optical chemical sensor for oil-filled power transformer. , 2014, , .

#	Article	IF	CITATIONS
127	Chemical sensors based on SPR in a Plastic Optical Fiber: Simultaneous detection of Fe(III) and Cu(II). , 2014, , .		1
128	Environmental characterization of an optical trigger for MV electric board. , 2014, , .		1
129	An innovative plastic optical fiber-based biosensor for new bio/applications. The case of celiac disease. Sensors and Actuators B: Chemical, 2013, 176, 1008-1014.	7.8	85
130	Sensors based on surface plasmon resonance in a plastic optical fiber for the detection of trinitrotoluene. Sensors and Actuators B: Chemical, 2013, 188, 221-226.	7.8	119
131	Performance Comparison of Two Sensors Based on Surface Plasmon Resonance in a Plastic Optical Fiber. Sensors, 2013, 13, 721-735.	3.8	98
132	Localized Surface Plasmon Resonance with Five-Branched Gold Nanostars in a Plastic Optical Fiber for Bio-Chemical Sensor Implementation. Sensors, 2013, 13, 14676-14686.	3.8	62
133	Detection of trinitrotoluene based on SPR in molecularly imprinted polymer on plastic optical fiber. Proceedings of SPIE, 2013, , .	0.8	5
134	Optimal Design of D-Type Plastic Fibers for Best Sensitivity of SPR Sensors. Advanced Engineering Forum, 2013, 8-9, 563-573.	0.3	1
135	High quality factor HTS Josephson junctions on low loss substrates. Superconductor Science and Technology, 2011, 24, 045008.	3.5	21
136	Low Cost Sensors Based on SPR in a Plastic Optical Fiber for Biosensor Implementation. Sensors, 2011, 11, 11752-11760.	3.8	261
137	D-galactose/D-glucose-binding Protein from Escherichia coli as Probe for a Non-consuming Glucose Implantable Fluorescence Biosensor. Sensors, 2007, 7, 2484-2491.	3.8	21
138	Planar Waveguides for Fluorescence-Based Biosensing: Optimization and Analysis. IEEE Sensors Journal, 2006, 6, 1218-1226.	4.7	37
139	The Odorant-Binding Protein from Canis familiaris: Purification, Characterization and New Perspectives in Biohazard Assessment. Protein and Peptide Letters, 2006, 13, 349-352.	0.9	14
140	Polymer-on-glass waveguide structure for efficient fluorescence-based optical biosensors. , 2005, , .		0
141	Odor binding protein as probe for a refractive index-based biosensor: new perspectives in biohazard assessment. , 2004, 5321, 258.		3
142	Optical Coatings: Applications and Metrology. , 0, , .		1