Jiguang Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1325718/publications.pdf

Version: 2024-02-01

214 papers 12,058 citations

64 h-index 97 g-index

218 all docs

218 docs citations

218 times ranked

8204 citing authors

#	Article	IF	CITATIONS
1	Component regulation in novel La-Co-O-C composite catalyst for boosted redox reactions and enhanced thermal stability in methane combustion. Journal of Environmental Sciences, 2023, 126, 459-469.	6.1	5
2	Comparison of separated and combined photodegradation and biofiltration technology for the treatment of volatile organic compounds: A critical review. Critical Reviews in Environmental Science and Technology, 2022, 52, 1325-1355.	12.8	16
3	Phosphorus-containing g-C3N4 photocatalysts for hydrogen evolution: A review. International Journal of Hydrogen Energy, 2022, 47, 42136-42149.	7.1	17
4	Band alignment of homojunction by anchoring CN quantum dots on g-C3N4 (0D/2D) enhance photocatalytic hydrogen peroxide evolution. Applied Catalysis B: Environmental, 2022, 300, 120736.	20.2	70
5	Catalytic stability enhancement for pollutant removal via balancing lattice oxygen mobility and VOCs adsorption. Journal of Hazardous Materials, 2022, 424, 127337.	12.4	57
6	Selective photocatalytic oxidation of gaseous ammonia at ppb level over Pt and F modified TiO2. Applied Catalysis B: Environmental, 2022, 300, 120688.	20.2	30
7	Electronic structure tailoring of Al3+- and Ta5+-doped CeO2 for the synergistic removal of NO and chlorinated organics. Applied Catalysis B: Environmental, 2022, 304, 120939.	20.2	42
8	An isotopic strategy to investigate the role of water vapor in the oxidation of 1,2-dichloroethane over the Ru/WO3 or Ru/TiO2 catalyst. Applied Catalysis B: Environmental, 2022, 305, 121037.	20.2	35
9	Experimental and density functional theory investigations on the oxidation of typical aromatics over the intermetallic compounds-derived AuMn/meso-Fe2O3 catalysts. Journal of Catalysis, 2022, 405, 273-287.	6.2	11
10	Structure-activity relationship of Pt catalyst on engineered ceria-alumina support for CO oxidation. Journal of Catalysis, 2022, 405, 236-248.	6.2	23
11	Copper Single Atom-Triggered Niobia–Ceria Catalyst for Efficient Low-Temperature Reduction of Nitrogen Oxides. ACS Catalysis, 2022, 12, 2441-2453.	11.2	48
12	Amino acid-deep eutectic solvents/LaCoO3 mutualism system:Forming La-Co-C-O hybrid for low temperature methane catalytic oxidation. Fuel, 2022, 316, 123358.	6.4	7
13	Pd/silicalite-1: An highly active catalyst for the oxidative removal of toluene. Journal of Environmental Sciences, 2022, 116, 209-219.	6.1	7
14	Catalytic performance and SO2 resistance of zirconia-supported platinum-palladium bimetallic nanoparticles for methane combustion. Catalysis Today, 2022, 402, 138-148.	4.4	8
15	Achieving efficient toluene oxidation over metal–organic framework-derived Pt/CeO2-Co3O4 catalyst. Applied Surface Science, 2022, 591, 153225.	6.1	25
16	Electronically Engineering Water Resistance in Methane Combustion with an Atomically Dispersed Tungsten on PdO Catalyst. Angewandte Chemie - International Edition, 2022, 61, .	13.8	63
17	Electronically Engineering Water Resistance in Methane Combustion with an Atomically Dispersed Tungsten on PdO Catalyst. Angewandte Chemie, 2022, 134, .	2.0	9
18	Synergy in Auâ^'CuO Janus Structure for Catalytic Isopropanol Oxidative Dehydrogenation to Acetone. Angewandte Chemie, 2022, 134, .	2.0	5

#	Article	IF	CITATIONS
19	Synergy in Auâ^'CuO Janus Structure for Catalytic Isopropanol Oxidative Dehydrogenation to Acetone. Angewandte Chemie - International Edition, 2022, 61, .	13.8	30
20	Hetero-phase dendritic elemental phosphorus for visible light photocatalytic hydrogen generation. Applied Catalysis B: Environmental, 2022, 312, 121428.	20.2	15
21	Enhanced Performance of Supported Ternary Metal Catalysts for the Oxidation of Toluene in the Presence of Trichloroethylene. Catalysts, 2022, 12, 541.	3.5	2
22	Photothermal Synergistic Effect of Pt ₁ /CuO-CeO ₂ Single-Atom Catalysts Significantly Improving Toluene Removal. Environmental Science & Environmental Science & 2022, 56, 8722-8732.	10.0	52
23	Engineering Platinum Catalysts <i>via</i> a Site-Isolation Strategy with Enhanced Chlorine Resistance for the Elimination of Multicomponent VOCs. Environmental Science & Envi	10.0	17
24	Mesoporous Na _{<i>x</i>} MnO _{<i>y</i>} -Supported Platinumâ€"Cobalt Bimetallic Single-Atom Catalysts with Good Sulfur Dioxide Tolerance in Propane Oxidation. ACS Sustainable Chemistry and Engineering, 2022, 10, 8326-8341.	6.7	7
25	N-doped carbon-modified palladium catalysts with superior water resistant performance for the oxidative removal of toxic aromatics. Journal of Hazardous Materials, 2022, 437, 129358.	12.4	10
26	Photocatalytic Cr(VI) elimination over BUC-21/N-K2Ti4O9 composites: Big differences in performance resulting from small differences in composition. Chinese Journal of Catalysis, 2021, 42, 259-270.	14.0	33
27	AuPd/Co3O4/3DOM MnCo2O4: Highly active catalysts for methane combustion. Catalysis Today, 2021, 376, 134-143.	4.4	12
28	Effect of support nature on catalytic activity of the bimetallic RuCo nanoparticles for the oxidative removal of 1,2-dichloroethane. Applied Catalysis B: Environmental, 2021, 285, 119804.	20.2	35
29	Mercury vapor adsorption and sustainable recovery using novel electrothermal swing system with gold-electrodeposited activated carbon fiber cloth. Journal of Hazardous Materials, 2021, 410, 124586.	12.4	8
30	Effect of transition metal oxide doping on catalytic activity of titania for the oxidation of 1,2-dichloroethane. Catalysis Today, 2021, 375, 623-634.	4.4	19
31	Combustion of acetylene over the mesoporous CeO2-supported IrFe bimetallic catalysts. Catalysis Today, 2021, 382, 22-33.	4.4	3
32	The Binding Strength of Reactive H*: A Neglected Key Factor in Rh-Catalyzed Environmental Hydrodefluorination Reaction. ACS ES&T Engineering, 2021, 1, 1036-1045.	7.6	6
33	Highly Active and Stable Palladium Catalysts on Novel Ceria–Alumina Supports for Efficient Oxidation of Carbon Monoxide and Hydrocarbons. Environmental Science & Environmental Science & 2021, 55, 7624-7633.	10.0	28
34	Highly efficient and enhanced sulfur resistance supported bimetallic single-atom palladium–cobalt catalysts for benzene oxidation. Applied Catalysis B: Environmental, 2021, 285, 119844.	20.2	83
35	Catalytic combustion of methane conducted on La–B–O–C (B Co, Mn, Fe) composites: The effects of B-sites cation properties. International Journal of Hydrogen Energy, 2021, 46, 23954-23961.	7.1	8
36	Influence of preparation method on catalytic performance of three-dimensionally ordered macroporous NiO–CuO for CO oxidation. Journal of Solid State Chemistry, 2021, 297, 122091.	2.9	9

#	Article	IF	CITATIONS
37	Promotional roles of second metals in catalyzing methane decomposition over the Ni-based catalysts for hydrogen production: A critical review. International Journal of Hydrogen Energy, 2021, 46, 20435-20480.	7.1	54
38	Emissions, measurement, and control of odor in livestock farms: A review. Science of the Total Environment, 2021, 776, 145735.	8.0	79
39	Elemental red phosphorus-based photocatalysts for environmental remediation: A review. Chemosphere, 2021, 274, 129793.	8.2	34
40	Catalytic performance and intermediates identification of trichloroethylene deep oxidation over Ru/3DOM SnO2 catalysts. Journal of Catalysis, 2021, 400, 310-324.	6.2	26
41	Nanotubular OMS-2 Supported Single-Atom Platinum Catalysts Highly Active for Benzene Oxidation. Journal of Physical Chemistry C, 2021, 125, 17696-17708.	3.1	22
42	Support promotion effect on the SO2 and K+ co-poisoning resistance of MnO2/TiO2 for NH3-SCR of NO. Journal of Hazardous Materials, 2021, 416, 126117.	12.4	53
43	In situ construction of elemental phosphorus nanorod-modified TiO2 photocatalysts for efficient visible-light-driven H2 generation. Applied Catalysis B: Environmental, 2021, 297, 120412.	20.2	30
44	Phosphorus vapor assisted preparation of P-doped ultrathin hollow g-C3N4 sphere for efficient solar-to-hydrogen conversion. Applied Catalysis B: Environmental, 2021, 297, 120438.	20.2	47
45	An investigation on catalytic performance and reaction mechanism of RuMn/meso-TiO2 derived from RuMn intermetallic compounds for methyl ethyl ketone oxidation. Applied Catalysis B: Environmental, 2021, 296, 120361.	20.2	16
46	Simulated solar light driven photothermal catalytic purification of toluene over iron oxide supported single atom Pt catalyst. Applied Catalysis B: Environmental, 2021, 298, 120612.	20.2	54
47	High Selectivity to HCl for the Catalytic Removal of 1,2-Dichloroethane Over RuP/3DOM WO _{<i>x</i>} : Insights into the Effects of P-Doping and H ₂ O Introduction. Environmental Science & Environmental Scie	10.0	33
48	Facilitating Catalytic Purification of Auto-Exhaust Carbon Particles via the Fe ₂ O ₃ {113} Facet-dependent Effect in Pt/Fe ₂ O ₃ Catalysts. Environmental Science & Environmental Science	10.0	18
49	Three-dimensionally ordered macroporous Cr2O3â^'CeO2: High-performance catalysts for the oxidative removal of trichloroethylene. Catalysis Today, 2020, 339, 200-209.	4.4	35
50	In situ molten salt derived iron oxide supported platinum catalyst with high catalytic performance for o-xylene elimination. Catalysis Today, 2020, 351, 30-36.	4.4	15
51	Activated carbon supported MnO nanoparticles for efficient ozone decomposition at room temperature. Catalysis Today, 2020, 355, 573-579.	4.4	35
52	Mesoporous cobalt monoxide-supported platinum nanoparticles: Superior catalysts for the oxidative removal of benzene. Journal of Environmental Sciences, 2020, 90, 170-179.	6.1	11
53	Insights into the active sites of chlorine-resistant Pt-based bimetallic catalysts for benzene oxidation. Applied Catalysis B: Environmental, 2020, 279, 119372.	20.2	62
54	Facet-Dependent Cobalt Ion Distribution on the Co ₃ O ₄ Nanocatalyst Surface. Journal of Physical Chemistry Letters, 2020, 11, 9913-9919.	4.6	20

#	Article	IF	CITATIONS
55	A short review of bioaerosol emissions from gas bioreactors: Health threats, influencing factors and control technologies. Chemosphere, 2020, 253, 126737.	8.2	32
56	3DOM CeO ₂ -supported Ru _y M (M = Au, Pd, Pt) alloy nanoparticles with improved catalytic activity and chlorine-tolerance in trichloroethylene oxidation. Catalysis Science and Technology, 2020, 10, 3755-3770.	4.1	25
57	Performance enhancement of a biofilter with pH buffering and filter bed supporting material in removal of chlorobenzene. Chemosphere, 2020, 251, 126358.	8.2	22
58	Mechanistic insights into toluene degradation under VUV irradiation coupled with photocatalytic oxidation. Journal of Hazardous Materials, 2020, 399, 122967.	12.4	48
59	Carbon Monoxide Oxidation over rGO-Mediated Gold/Cobalt Oxide Catalysts with Strong Metal–Support Interaction. ACS Applied Materials & Samp; Interfaces, 2020, 12, 31467-31476.	8.0	24
60	Comprehending adsorption of methylethylketone and toluene and microwave regeneration effectiveness for beaded activated carbon derived from recycled waste bamboo tar. Journal of the Air and Waste Management Association, 2020, 70, 616-628.	1.9	10
61	Intermetallic compound PtMn -derived Ptâ^'MnO supported on mesoporous CeO2: Highly efficient catalysts for the combustion of toluene. Applied Catalysis A: General, 2020, 595, 117509.	4.3	30
62	Probing toluene catalytic removal mechanism over supported Pt nano- and single-atom-catalyst. Journal of Hazardous Materials, 2020, 392, 122258.	12.4	85
63	Toluene Oxidation over the M–Al (M = Ce, La, Co, Ce–La, and Ce–Co) Catalysts Derived from the Modified "One-Pot―Evaporation-Induced Self-Assembly Method: Effects of Microwave or Ultrasound Irradiation and Noble-Metal Loading on Catalytic Activity and Stability. Industrial & Degineering Chemistry Research. 2020. 59. 5624-5635.	3.7	10
64	Microfluidics revealing formation mechanism of intermetallic nanocrystals. Nano Energy, 2020, 70, 104565.	16.0	12
65	Rare earth oxides and their supported noble metals in application of environmental catalysis. Journal of Rare Earths, 2020, 38, 819-839.	4.8	49
66	A Resource utilization method for volatile organic compounds emission from the semiconductor industry: Selective catalytic oxidation of isopropanol to acetone Over Au/ \hat{l} ±-Fe2O3 nanosheets. Applied Catalysis B: Environmental, 2020, 275, 119011.	20.2	31
67	PtRu nanoparticles partially embedded in the 3DOM Ce0.7Zr0.3O2 skeleton: Active and stable catalysts for toluene combustion. Journal of Catalysis, 2020, 385, 274-288.	6.2	42
68	Size effect, mutual inhibition and oxidation mechanism of the catalytic removal of a toluene and acetone mixture over TiO2 nanosheet-supported Pt nanocatalysts. Applied Catalysis B: Environmental, 2020, 274, 118963.	20.2	125
69	Evaluation of the CO2 tolerant cathode for solid oxide fuel cells: Praseodymium oxysulfates/Ba0.5Sr0.5Co0.8Fe0.2O3-δ. Applied Surface Science, 2019, 472, 10-15.	6.1	17
70	Preparation and high catalytic performance of Co3O4–MnO2 for the combustion of o-xylene. Catalysis Today, 2019, 327, 246-253.	4.4	28
71	Pt Co/meso-MnO : Highly efficient catalysts for low-temperature methanol combustion. Catalysis Today, 2019, 332, 168-176.	4.4	16
72	Pd/meso-CoO derived from in situ reduction of the one-step synthesized Pd/meso-Co3O4: high-performance catalysts for benzene combustion. New Journal of Chemistry, 2019, 43, 12358-12368.	2.8	11

#	Article	IF	Citations
73	Ru Nanoparticles Supported on Oxygenâ€Deficient 3DOM BiVO 4 : Highâ€Performance Catalysts for the Visibleâ€Lightâ€Driven Selective Oxidation of Benzyl Alcohol. ChemCatChem, 2019, 11, 6398-6407.	3.7	9
74	Influence of group VIB metals on activity of the Ni/MgO catalysts for methane decomposition. Applied Catalysis B: Environmental, 2019, 248, 515-525.	20.2	79
75	Alloying of gold with palladium: An effective strategy to improve catalytic stability and chlorine-tolerance of the 3DOM CeO2-supported catalysts in trichloroethylene combustion. Applied Catalysis B: Environmental, 2019, 257, 117879.	20.2	83
76	AgAuPd/meso-Co3O4: High-performance catalysts for methanol oxidation. Chinese Journal of Catalysis, 2019, 40, 837-848.	14.0	13
77	Partially embedding Pt nanoparticles in the skeleton of 3DOM Mn2O3: An effective strategy for enhancing catalytic stability in toluene combustion. Applied Catalysis B: Environmental, 2019, 256, 117814.	20.2	104
78	Supported ceria-modified silver catalysts with high activity and stability for toluene removal. Environment International, 2019, 128, 335-342.	10.0	36
79	Supported ultralow loading Pt catalysts with high H2O-, CO2-, and SO2-resistance for acetone removal. Applied Catalysis A: General, 2019, 579, 106-115.	4.3	65
80	Coupled Palladium–Tungsten Bimetallic Nanosheets/TiO ₂ Hybrids with Enhanced Catalytic Activity and Stability for the Oxidative Removal of Benzene. Environmental Science & Environmental	10.0	59
81	Mesoporous Ni/MeO (Me = Al, Mg, Ti, and Si): Highly efficient catalysts in the decomposition of methane for hydrogen production. Applied Surface Science, 2019, 478, 581-593.	6.1	60
82	Robust photocatalytic reduction of Cr(VI) on UiO-66-NH2(Zr/Hf) metal-organic framework membrane under sunlight irradiation. Chemical Engineering Journal, 2019, 356, 393-399.	12.7	255
83	Three-dimensionally ordered mesoporous iron oxide-supported single-atom platinum: Highly active catalysts for benzene combustion. Applied Catalysis B: Environmental, 2019, 244, 650-659.	20.2	159
84	Enhanced photocatalytic $Cr(VI)$ reduction and diclofenac sodium degradation under simulated sunlight irradiation over MIL-100(Fe)/g-C3N4 heterojunctions. Chinese Journal of Catalysis, 2019, 40, 70-79.	14.0	136
85	Mesoporous CoO-supported palladium nanocatalysts with high performance for <i>>o</i> -xylene combustion. Catalysis Science and Technology, 2018, 8, 806-816.	4.1	47
86	Concurrent catalytic removal of typical volatile organic compound mixtures over Au-Pd/α-MnO 2 nanotubes. Journal of Environmental Sciences, 2018, 64, 276-288.	6.1	70
87	Co–Pd/BiVO4: High-performance photocatalysts for the degradation of phenol under visible light irradiation. Applied Catalysis B: Environmental, 2018, 224, 350-359.	20.2	116
88	Au â ⁻ Pd/mesoporous Fe2O3: Highly active photocatalysts for the visible-light-driven degradation of acetone. Journal of Environmental Sciences, 2018, 70, 74-86.	6.1	14
89	3DOM LaMnAl11019-supported AuPd alloy nanoparticles: Highly active catalysts for methane combustion in a continuous-flow microreactor. Catalysis Today, 2018, 308, 71-80.	4.4	13
90	Promotional role of Mn doping on catalytic oxidation of VOCs over mesoporous TiO2 under vacuum ultraviolet (VUV) irradiation. Applied Catalysis B: Environmental, 2018, 220, 78-87.	20.2	95

#	Article	IF	Citations
91	AuPd/3DOM TiO2 Catalysts: Good Activity and Stability for the Oxidation of Trichloroethylene. Catalysts, 2018, 8, 666.	3.5	13
92	AuRu/meso-Mn2O3: A Highly Active and Stable Catalyst for Methane Combustion. IOP Conference Series: Materials Science and Engineering, 2018, 359, 012022.	0.6	1
93	Highly Active and Stable Pdâ^'GaO _{<i>x</i>} /Al ₂ O ₃ Catalysts Derived from Intermetallic Pd ₅ Ga ₃ Nanocrystals for Methane Combustion. ChemCatChem, 2018, 10, 5637-5648.	3.7	21
94	In-situ reduction-derived Pd/3DOM La0.6Sr0.4MnO3: Good catalytic stability in methane combustion. Applied Catalysis A: General, 2018, 568, 202-212.	4.3	14
95	Preparation, characterization, and catalytic performance of PdPt/3DOM LaMnAl11019 for the combustion of methane. Applied Catalysis A: General, 2018, 562, 284-293.	4.3	14
96	Effect of transition metal doping on the catalytic performance of Au–Pd/3DOM Mn2O3 for the oxidation of methane and o-xylene. Applied Catalysis B: Environmental, 2017, 206, 221-232.	20.2	129
97	Catalytic performance enhancement by alloying Pd with Pt on ordered mesoporous manganese oxide for methane combustion. Chinese Journal of Catalysis, 2017, 38, 92-105.	14.0	33
98	Efficient Removal of Methane over Cobalt-Monoxide-Doped AuPd Nanocatalysts. Environmental Science & En	10.0	53
99	Enhanced catalytic performance for methane combustion of 3DOM CoFe2O4 by co-loading MnO and Pd–Pt alloy nanoparticles. Applied Surface Science, 2017, 403, 590-600.	6.1	43
100	Insights into the active sites of ordered mesoporous cobalt oxide catalysts for the total oxidation of o-xylene. Journal of Catalysis, 2017, 352, 282-292.	6.2	95
101	Bias polarization study of steam electrolysis by composite oxygen electrode Ba0.5Sr0.5Co0.8Fe0.2O3-Î/BaCe0.4Zr0.4Y0.2O3-Î/. Applied Surface Science, 2017, 424, 82-86.	6.1	2
102	Catalytic performance of cobalt oxide-supported gold-palladium nanocatalysts for the removal of toluene and o -xylene. Chinese Journal of Catalysis, 2017, 38, 207-216.	14.0	30
103	Graphitic carbon nitride-supported iron oxides: High-performance photocatalysts for the visible-light-driven degradation of 4-nitrophenol. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 336, 105-114.	3.9	36
104	Mesoporous Pd Pt alloys: High-performance catalysts for methane combustion. Molecular Catalysis, 2017, 442, 191-201.	2.0	18
105	Three-dimensionally ordered macroporous LaMnAl11019-supported Pd nanocatalysts highly active for methane combustion. Molecular Catalysis, 2017, 439, 200-210.	2.0	15
106	Three-dimensionally ordered macroporous CoCr 2 O 4 -supported Au–Pd alloy nanoparticles: Highly active catalysts for methane combustion. Catalysis Today, 2017, 281, 467-476.	4.4	36
107	Fe2O3/3DOM BiVO4: High-performance photocatalysts for the visible light-driven degradation of 4-nitrophenol. Applied Catalysis B: Environmental, 2017, 202, 569-579.	20.2	175
108	Mn 3 O 4 -Au/3DOM La 0.6 Sr 0.4 CoO 3 : High-performance catalysts for toluene oxidation. Catalysis Today, 2017, 281, 437-446.	4.4	41

#	Article	IF	Citations
109	Photocatalytic Cr(VI) reduction and organic-pollutant degradation in a stable 2D coordination polymer. Chinese Journal of Catalysis, 2017, 38, 2141-2149.	14.0	59
110	PtxNi/meso-Al2O3 (x = 0.60â \in "2.07): High- Performance Catalysts for the Hydrogenation of N-Butanal at Low Temperatures. , 2017, , 201-212.		0
111	AuPt/3DOM CoCr2O4: Highly Active Catalysts for the Combustion of Methane. The Global Environmental Engineers, 2017, 4, 24-36.	0.3	2
112	High Performance Au–Pd Supported on 3D Hybrid Strontium-Substituted Lanthanum Manganite Perovskite Catalyst for Methane Combustion. ACS Catalysis, 2016, 6, 6935-6947.	11.2	158
113	Three-dimensionally ordered macroporous CeO2-supported Pd@Co nanoparticles: Highly active catalysts for methane oxidation. Journal of Catalysis, 2016, 342, 17-26.	6.2	131
114	Catalytic removal of volatile organic compounds using ordered porous transition metal oxide and supported noble metal catalysts. Chinese Journal of Catalysis, 2016, 37, 1193-1205.	14.0	101
115	Pt/Co3O4/3DOM Al2O3: Highly effective catalysts for toluene combustion. Chinese Journal of Catalysis, 2016, 37, 934-946.	14.0	36
116	Preparation and catalytic performance of Ag, Au, Pd or Pt nanoparticles supported on 3DOM CeO2–Al2O3 for toluene oxidation. Journal of Molecular Catalysis A, 2016, 414, 9-18.	4.8	83
117	Mesoporous Cr2O3-supported Au–Pd nanoparticles: High-performance catalysts for the oxidation of toluene. Microporous and Mesoporous Materials, 2016, 224, 311-322.	4.4	70
118	Fabrication and Catalytic Performance of Au/3DOM Fe2O3 Catalysts for the Oxidative Removal of Toluene. , 2016, , .		0
119	Au/MnO _{<i>x</i><isub>/3DOM La_{0.6}Sr_{0.4}MnO₃: Highly Active Nanocatalysts for the Complete Oxidation of Toluene. Industrial & Description of Complete Oxidation of Complete Ox</isub>}	3.7	35
120	3DOM BiVO 4 supported silver bromide and noble metals: High-performance photocatalysts for the visible-light-driven degradation of 4-chlorophenol. Applied Catalysis B: Environmental, 2015, 168-169, 274-282.	20.2	95
121	Three-dimensionally ordered macroporous Pr6O11 and Tb4O7 with mesoporous walls: Preparation, characterization, and catalytic activity for CO oxidation. Catalysis Today, 2015, 245, 28-36.	4.4	42
122	Ce _{0.6} Zr _{0.3} Y _{0.1} O ₂ nanorod supported gold and palladium alloy nanoparticles: high-performance catalysts for toluene oxidation. Nanoscale, 2015, 7, 8510-8523.	5.6	49
123	Excellent catalytic performance, thermal stability, and water resistance of 3DOM Mn2O3-supported Auâ€"Pd alloy nanoparticles for the complete oxidation of toluene. Applied Catalysis A: General, 2015, 507, 82-90.	4.3	90
124	Au/MnO /3DOM SiO2: Highly active catalysts for toluene oxidation. Applied Catalysis A: General, 2015, 507, 139-148.	4.3	37
125	Three-dimensionally ordered mesoporous Co3O4-supported Au–Pd alloy nanoparticles: High-performance catalysts for methane combustion. Journal of Catalysis, 2015, 332, 13-24.	6.2	129
126	Synthesis, Characterization, and Catalytic Properties of MnOx/SBA-16 for Toluene Oxidation., 2015, , .		2

#	Article	IF	CITATIONS
127	Ultralow Loading of Silver Nanoparticles on Mn ₂ O ₃ Nanowires Derived with Molten Salts: A High-Efficiency Catalyst for the Oxidative Removal of Toluene. Environmental Science &	10.0	123
128	Au–Pd/3DOM Co 3 O 4: Highly active and stable nanocatalysts for toluene oxidation. Journal of Catalysis, 2015, 322, 38-48.	6.2	270
129	Fabrication and high photocatalytic performance of noble metal nanoparticles supported on 3DOM InVO4–BiVO4 for the visible-light-driven degradation of rhodamine B and methylene blue. Applied Catalysis B: Environmental, 2015, 165, 285-295.	20.2	121
130	Catalytic Removal of Volatile Organic Compounds over Porous Catalysts. The Global Environmental Engineers, 2015, 2, 1-14.	0.3	4
131	Preparation and catalytic performance of Fe-SBA-15 and FeO \times /SBA-15 for toluene combustion. Science Bulletin, 2014, 59, 3993-4002.	1.7	8
132	Au/Ce _{0.6} Zr _{0.3} Y _{0.1} O ₂ Nanorods: Highly Active Catalysts for the Oxidation of Carbon Monoxide and Toluene. Industrial & Discrete Catalysts for the Oxidation of Carbon Monoxide and Toluene. Industrial & Discrete Catalysts (Section 2014, 53, 18452-18461.	3.7	19
133	Mesoporous Co3O4-supported gold nanocatalysts: Highly active for the oxidation of carbon monoxide, benzene, toluene, and o-xylene. Journal of Catalysis, 2014, 309, 408-418.	6.2	320
134	Morphologically Controlled Synthesis of Porous Spherical and Cubic LaMnO ₃ with High Activity for the Catalytic Removal of Toluene. ACS Applied Materials & Interfaces, 2014, 6, 17394-17401.	8.0	84
135	Gold Supported on Iron Oxide Nanodisk as Efficient Catalyst for The Removal of Toluene. Industrial & Lamp; Engineering Chemistry Research, 2014, 53, 3486-3494.	3.7	38
136	Preparation and high catalytic performance of Au/3DOM Mn2O3 for the oxidation of carbon monoxide and toluene. Journal of Hazardous Materials, 2014, 279, 392-401.	12.4	84
137	Porous Cubeâ€Aggregated Co ₃ O ₄ Microsphereâ€Supported Gold Nanoparticles for Oxidation of Carbon Monoxide and Toluene. ChemSusChem, 2014, 7, 1745-1754.	6.8	51
138	Nanoplate-aggregate Co3O4 microspheres for toluene combustion. Chinese Journal of Catalysis, 2014, 35, 1475-1481.	14.0	19
139	Three-Dimensionally Ordered Macroporous La _{0.6} Sr _{0.4} MnO ₃ Supported Ag Nanoparticles for the Combustion of Methane. Journal of Physical Chemistry C, 2014, 118, 14913-14928.	3.1	89
140	Catalytic toluene oxidation over the three-dimensionally ordered macroporous EuFeO3 catalysts fabricated by the sucrose-assisted polymethyl methacrylate-templating method. Solid State Sciences, 2014, 27, 36-42.	3.2	15
141	Controlled Generation of Uniform Spherical LaMnO ₃ , LaCoO ₃ , Mn ₂ O ₃ , and Co ₃ O ₄ Nanoparticles and Their High Catalytic Performance for Carbon Monoxide and Toluene Oxidation. Inorganic Chemistry, 2013, 52, 8665-8676.	4.0	124
142	Porous Co3O4 nanowires and nanorods: Highly active catalysts for the combustion of toluene. Applied Catalysis A: General, 2013, 450, 42-49.	4.3	156
143	Three-dimensionally ordered macroporous InVO4: Fabrication and excellent visible-light-driven photocatalytic performance for methylene blue degradation. Chemical Engineering Journal, 2013, 226, 87-94.	12.7	73
144	Porous FeOx/BiVO4–δS0.08: Highly efficient photocatalysts for the degradation of Methylene Blue under visible-light illumination. Journal of Environmental Sciences, 2013, 25, 2138-2149.	6.1	25

#	Article	IF	Citations
145	Three-dimensionally ordered macroporous La0.6Sr0.4MnO3 with high surface areas: Active catalysts for the combustion of methane. Journal of Catalysis, 2013, 307, 327-339.	6.2	206
146	Dual-templating synthesis of three-dimensionally ordered macroporous La0.6Sr0.4MnO3-supported Ag nanoparticles: controllable alignments and super performance for the catalytic combustion of methane. Chemical Communications, 2013, 49, 10748.	4.1	49
147	Au/3DOM Co3O4: highly active nanocatalysts for the oxidation of carbon monoxide and toluene. Nanoscale, 2013, 5, 11207.	5.6	133
148	PMMA-templating preparation and catalytic activities of three-dimensional macroporous strontium ferrites with high surface areas for toluene combustion. Catalysis Today, 2013, 201, 40-48.	4.4	29
149	Effect of sulfur doping on the photocatalytic performance of BiVO4 under visible light illumination. Chinese Journal of Catalysis, 2013, 34, 1617-1626.	14.0	39
150	Au/3DOM LaCoO3: High-performance catalysts for the oxidation of carbon monoxide and toluene. Chemical Engineering Journal, 2013, 228, 965-975.	12.7	114
151	Au/3DOM La0.6Sr0.4MnO3: Highly active nanocatalysts for the oxidation of carbon monoxide and toluene. Journal of Catalysis, 2013, 305, 146-153.	6.2	146
152	Catalytic removal of toluene over three-dimensionally ordered macroporous Eu1–Sr FeO3. Chemical Engineering Journal, 2013, 214, 262-271.	12.7	49
153	Mesoporous LaFeO3 catalysts for the oxidation of toluene and carbon monoxide. Chinese Journal of Catalysis, 2013, 34, 2223-2229.	14.0	48
154	One-pot hydrothermal preparation and catalytic performance of porous strontium ferrite hollow spheres for the combustion of toluene. Journal of Molecular Catalysis A, 2013, 370, 189-196.	4.8	14
155	Porous F-doped BiVO4: Synthesis and enhanced photocatalytic performance for the degradation of phenol under visible-light illumination. Solid State Sciences, 2013, 17, 21-27.	3.2	56
156	Enhanced visible-light photocatalytic activities of porous olive-shaped sulfur-doped BiVO4-supported cobalt oxides. Solid State Sciences, 2013, 18, 98-104.	3.2	26
157	3DOM InVO4-supported chromia with good performance for the visible-light-driven photodegradation of rhodamine B. Solid State Sciences, 2013, 24, 62-70.	3.2	48
158	Glucose-assisted hydrothermal preparation and catalytic performance of porous LaFeO3 for toluene combustion. Journal of Solid State Chemistry, 2013, 199, 164-170.	2.9	43
159	In situ PMMA-templating preparation and excellent catalytic performance of Co3O4/3DOM La0.6Sr0.4CoO3 for toluene combustion. Applied Catalysis A: General, 2013, 458, 11-20.	4.3	67
160	The microemulsion preparation and high catalytic performance of mesoporous NiO nanorods and nanocubes for toluene combustion. Chemical Engineering Journal, 2013, 219, 200-208.	12.7	85
161	PMMA-templating generation and high catalytic performance of chain-like ordered macroporous LaMnO3 supported gold nanocatalysts for the oxidation of carbon monoxide and toluene. Applied Catalysis B: Environmental, 2013, 140-141, 317-326.	20.2	74
162	In situ poly(methyl methacrylate)-templating generation and excellent catalytic performance of MnOx/3DOM LaMnO3 for the combustion of toluene and methanol. Applied Catalysis B: Environmental, 2013, 140-141, 493-505.	20.2	130

#	Article	IF	Citations
163	Three-dimensionally ordered macroporous Eu0.6Sr0.4FeO3 supported cobalt oxides: Highly active nanocatalysts for the combustion of toluene. Applied Catalysis B: Environmental, 2013, 129, 539-548.	20.2	47
164	Preparation of three-dimensionally ordered macroporous La0.6Sr0.4Fe0.8Bi0.2O3â^î and their excellent catalytic performance for the combustion of toluene. Journal of Molecular Catalysis A, 2013, 366, 116-125.	4.8	29
165	Diaquabis(4-hydroxy-5-nitropyridine-2-carboxylato-κ2N1,O2)copper(II). Acta Crystallographica Section E: Structure Reports Online, 2012, 68, m46-m46.	0.2	0
166	Poly[[dodecaaquabis($\hat{l}\frac{1}{4}$ 3-pyridine-2,6-dicarboxylato)tetrakis($\hat{l}\frac{1}{4}$ 2-pyridine-2,6-dicarboxylato)tricalciumdieuropiur 10.5-hydrate]. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, m685-m686.	n()]	1
167	A comparative study of bulk and 3DOM-structured Co3O4, Eu0.6Sr0.4FeO3, and Co3O4/Eu0.6Sr0.4FeO3: Preparation, characterization, and catalytic activities for toluene combustion. Applied Catalysis A: General, 2012, 447-448, 41-48.	4.3	47
168	Three-dimensional ordered macroporous bismuth vanadates: PMMA-templating fabrication and excellent visible light-driven photocatalytic performance for phenol degradation. Nanoscale, 2012, 4, 2317.	5.6	95
169	Rod-, flower-, and dumbbell-like MnO2: Highly active catalysts for the combustion of toluene. Applied Catalysis A: General, 2012, 433-434, 206-213.	4.3	133
170	Porous NiO nanoflowers and nanourchins: Highly active catalysts for toluene combustion. Catalysis Communications, 2012, 27, 148-153.	3.3	102
171	Three-dimensionally ordered macroporous La0.6Sr0.4FeO3â $^{\circ}$ Î: High-efficiency catalysts for the oxidative removal of toluene. Microporous and Mesoporous Materials, 2012, 163, 131-139.	4.4	61
172	Manganese Oxides with Rod-, Wire-, Tube-, and Flower-Like Morphologies: Highly Effective Catalysts for the Removal of Toluene. Environmental Science & Environmental Science & 2012, 46, 4034-4041.	10.0	671
173	Three-dimensionally ordered macroporous SrFeO3â [~] δ with high surface area: Active catalysts for the complete oxidation of toluene. Applied Catalysis A: General, 2012, 425-426, 153-160.	4.3	55
174	Lysine-aided PMMA-templating preparation and high performance of three-dimensionally ordered macroporous LaMnO3 with mesoporous walls for the catalytic combustion of toluene. Applied Catalysis B: Environmental, 2012, 119-120, 20-31.	20.2	86
175	Controlled preparation and high catalytic performance of three-dimensionally ordered macroporous LaMnO3 with nanovoid skeletons for the combustion of toluene. Journal of Catalysis, 2012, 287, 149-160.	6.2	230
176	Hydrothermal fabrication and visible-light-driven photocatalytic properties of bismuth vanadate with multiple morphologies and/or porous structures for Methyl Orange degradation. Journal of Environmental Sciences, 2012, 24, 449-457.	6.1	85
177	Surfactant-aided hydrothermal preparation of La2-xSrxCuO4 single crystallites and their catalytic performance on methane combustion. Journal of Natural Gas Chemistry, 2012, 21, 69-75.	1.8	11
178	High-performance porous spherical or octapod-like single-crystalline BiVO4 photocatalysts for the removal of phenol and methylene blue under visible-light illumination. Journal of Hazardous Materials, 2012, 217-218, 92-99.	12.4	88
179	Morphology-Dependent Photocatalytic Performance of Monoclinic BiVO4 for Methyl Orange Degradation under Visible-Light Irradiation. Chinese Journal of Catalysis, 2011, 32, 939-949.	14.0	57
180	P123-PMMA Dual-Templating Generation and Unique Physicochemical Properties of Three-Dimensionally Ordered Macroporous Iron Oxides with Nanovoids in the Crystalline Walls. Inorganic Chemistry, 2011, 50, 2534-2544.	4.0	77

#	Article	IF	CITATIONS
181	Dual-Templating Preparation and Enhanced Low-Temperature Reducibility of Three-Dimensionally Ordered Macroporous Ceria with Mesoporous Walls. Chinese Journal of Catalysis, 2011, 32, 842-852.	14.0	14
182	Solvo- or hydrothermal fabrication and excellent carbon dioxide adsorption behaviors of magnesium oxides with multiple morphologies and porous structures. Materials Chemistry and Physics, 2011, 128, 348-356.	4.0	78
183	Surfactant-mediated PMMA-templating fabrication and characterization of three-dimensionally ordered macroporous Eu2O3 and Sm2O3 with mesoporous walls. Materials Chemistry and Physics, 2011, 129, 586-593.	4.0	38
184	PMMA-templating preparation and catalytic properties of high-surface-area three-dimensional macroporous La2CuO4 for methane combustion. Catalysis Today, 2011, 175, 209-215.	4.4	40
185	Three-dimensionally ordered and wormhole-like mesoporous iron oxide catalysts highly active for the oxidation of acetone and methanol. Journal of Hazardous Materials, 2011, 186, 84-91.	12.4	80
186	Porous olive-like BiVO4: Alcoho-hydrothermal preparation and excellent visible-light-driven photocatalytic performance for the degradation of phenol. Applied Catalysis B: Environmental, 2011, 105, 326-334.	20.2	158
187	Single-crystalline mesoporous CaO supported Cr–V binary oxides: Highly active catalysts for the oxidative dehydrogenation of isobutane. Catalysis Today, 2011, 164, 347-352.	4.4	12
188	Surfactant-assisted solvo- or hydrothermal fabrication and characterization of high-surface-area porous calcium carbonate with multiple morphologies. Microporous and Mesoporous Materials, 2011, 138, 191-199.	4.4	56
189	Hydrothermal Fabrication and Catalytic Properties of YBa2Cu3O7 Single Crystallites for Methane Combustion. Catalysis Letters, 2010, 135, 126-134.	2.6	8
190	A comparative investigation of NdSrCu1â^'xCoxO4â^'δ and Sm1.8Ce0.2Cu1â^'xCoxO4â^'δ (x: 0–0.4) for NO decomposition. Journal of Environmental Sciences, 2010, 22, 448-453.	6.1	8
191	CrOx/nano-Ce0.60Zr0.35Y0.05O2 catalysts that are highly selective for the oxidative dehydrogenation of isobutane to isobutene. Applied Catalysis A: General, 2010, 375, 272-278.	4.3	14
192	Ultrasound-assisted nanocasting fabrication and excellent catalytic performance of three-dimensionally ordered mesoporous chromia for the combustion of formaldehyde, acetone, and methanol. Applied Catalysis B: Environmental, 2010, 100, 229-237.	20.2	106
193	Hydrothermal synthesis and catalytic performance of single-crystalline La2â^xSrxCuO4 for methane oxidation. Catalysis Today, 2010, 153, 143-149.	4.4	34
194	Ultrasound-Assisted Nanocasting Fabrication of Ordered Mesoporous MnO ₂ and Co ₃ O ₄ with High Surface Areas and Polycrystalline Walls. Journal of Physical Chemistry C, 2010, 114, 2694-2700.	3.1	108
195	Hydrothermal Fabrication and Catalytic Properties of La _{1-<i>x</i>} Fe _{<i>y</i>} O ₃ (M = Mn, Co) That Are Highly Active for the Removal of Toluene. Environmental Science & Environmental &	10.0	105
196	Template-free synthesis of high surface area single-crystalline lanthanum hydroxide nanorods via a low-temperature solution route. Materials Letters, 2009, 63, 632-634.	2.6	23
197	A Study on the Relationship Between Low-Temperature Reducibility and Catalytic Performance of Single-Crystalline La0.6Sr0.4MnO3+l´ Microcubes for Toluene Combustion. Catalysis Letters, 2009, 130, 622-629.	2.6	13
198	Hydrothermally fabricated single-crystalline strontium-substituted lanthanum manganite microcubes for the catalytic combustion of toluene. Journal of Molecular Catalysis A, 2009, 299, 60-67.	4.8	72

#	Article	IF	CITATIONS
199	Binary Cr–Mo oxide catalysts supported on MgO-coated polyhedral three-dimensional mesoporous SBA-16 for the oxidative dehydrogenation of iso-butane. Applied Catalysis A: General, 2009, 354, 72-81.	4.3	18
200	Preparation, characterization, and catalytic properties of NdSrCu1â^'xCoxO4â^'Î' and Sm1.8Ce0.2Cu1â^'xCoxO4+Î' (x=0, 0.2 and 0.4) for methane combustion. Applied Catalysis B: Environmental, 2009, 89, 87-96.	20.2	48
201	In situ hydrothermally synthesized mesoporous LaCoO3/SBA-15 catalysts: High activity for the complete oxidation of toluene and ethyl acetate. Applied Catalysis A: General, 2009, 352, 43-49.	4.3	77
202	Preparation, characterization, and catalytic activity of chromia supported on SBA-15 for the oxidative dehydrogenation of isobutane. Applied Catalysis A: General, 2009, 355, 192-201.	4.3	55
203	Mesoporous Chromia with Ordered Three-Dimensional Structures for the Complete Oxidation of Toluene and Ethyl Acetate. Environmental Science & Environm	10.0	103
204	Controlled Synthesis, Characterization, and Morphology-Dependent Reducibility of Ceriaâ^'Zirconiaâ^'Yttria Solid Solutions with Nanorod-like, Microspherical, Microbowknot-like, and Micro-octahedral Shapes. Inorganic Chemistry, 2009, 48, 2181-2192.	4.0	58
205	Single-Crystalline La0.6Sr0.4CoO3-δ Nanowires/Nanorods Derived Hydrothermally Without the Use of a Template: Catalysts Highly Active for Toluene Complete Oxidation. Catalysis Letters, 2008, 123, 294-300.	2.6	32
206	AuOx/Ce0.6Zr0.3Y0.1O2 nano-sized catalysts active for the oxidation of methane. Catalysis Today, 2008, 139, 29-36.	4.4	21
207	Effect of hydrothermal treatment temperature on the catalytic performance of single-crystalline La0.5Sr0.5MnO3â°Î microcubes for the combustion of toluene. Catalysis Today, 2008, 139, 82-87.	4.4	36
208	P123-Assisted Hydrothermal Synthesis and Characterization of Rectangular Parallelepiped and Hexagonal Prism Single-Crystalline MgO with Three-Dimensional Wormholelike Mesopores. Inorganic Chemistry, 2008, 47, 4015-4022.	4.0	65
209	Surfactant-Aided Hydrothermal Synthesis and Carbon Dioxide Adsorption Behavior of Three-Dimensionally Mesoporous Calcium Oxide Single-Crystallites with Tri-, Tetra-, and Hexagonal Morphologies. Journal of Physical Chemistry C, 2008, 112, 19248-19256.	3.1	44
210	Strontium-Doped Lanthanum Cobaltite and Manganite: Highly Active Catalysts for Toluene Complete Oxidation. Industrial & Engineering Chemistry Research, 2008, 47, 8175-8183.	3.7	110
211	Synthesis and characterization of wormhole-like mesoporous Ce0.6Zr0.35Y0.05O2 solid solutions. Science Bulletin, 2007, 52, 175-180.	1.7	2
212	Nanosized perovskite-type oxides La1â^'xSrxMO3â^'Î^ (M=Co, Mn; x=0, 0.4) for the catalytic removal of ethylacetate. Catalysis Today, 2007, 126, 420-429.	4.4	143
213	Photocatalytic Removal of Organics over BiVO4-Based Photocatalysts. , 0, , .		2
214	Oxidative Removal of Volatile Organic Compounds over the Supported Bimetallic Catalysts. The Global Environmental Engineers, 0, 7, 1-27.	0.3	2