Pantelis Hatzis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1324/publications.pdf

Version: 2024-02-01

257450 501196 3,524 29 24 28 h-index citations g-index papers 30 30 30 6411 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Transcription Factor Achaete Scute-Like 2 Controls Intestinal Stem Cell Fate. Cell, 2009, 136, 903-912.	28.9	615
2	Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nature Cell Biology, 2005, 7, 381-386.	10.3	555
3	Plasticity and expanding complexity of the hepatic transcription factor network during liver development. Genes and Development, 2006, 20, 2293-2305.	5.9	241
4	Ascl2 Acts as an R-spondin/Wnt-Responsive Switch to Control Stemness in Intestinal Crypts. Cell Stem Cell, 2015, 16, 158-170.	11.1	217
5	Genome-Wide Pattern of TCF7L2/TCF4 Chromatin Occupancy in Colorectal Cancer Cells. Molecular and Cellular Biology, 2008, 28, 2732-2744.	2.3	208
6	Dynamics of Enhancer-Promoter Communication during Differentiation-Induced Gene Activation. Molecular Cell, 2002, 10, 1467-1477.	9.7	202
7	Diabetes Risk Gene and Wnt Effector Tcf7l2/TCF4 Controls Hepatic Response to Perinatal and Adult Metabolic Demand. Cell, 2012, 151, 1595-1607.	28.9	202
8	Wnt-induced transcriptional activation is exclusively mediated by TCF/LEF. EMBO Journal, 2014, 33, 146-156.	7.8	157
9	Regulatory Mechanisms Controlling Human Hepatocyte Nuclear Factor 4α Gene Expression. Molecular and Cellular Biology, 2001, 21, 7320-7330.	2.3	127
10	Systematic integration of RNA-Seq statistical algorithms for accurate detection of differential gene expression patterns. Nucleic Acids Research, 2015, 43, e25-e25.	14.5	91
11	The Intracellular Localization of Deoxycytidine Kinase. Journal of Biological Chemistry, 1998, 273, 30239-30243.	3.4	83
12	Selection of Personalized Patient Therapy through the Use of Knowledge-Based Computational Models That Identify Tumor-Driving Signal Transduction Pathways. Cancer Research, 2014, 74, 2936-2945.	0.9	82
13	The Tup1-Cyc8 Protein Complex Can Shift from a Transcriptional Co-repressor to a Transcriptional Co-activator. Journal of Biological Chemistry, 1999, 274, 205-210.	3.4	80
14	The Leukemia-Associated Mllt10/Af10-Dot1l Are Tcf4/ \hat{l}^2 -Catenin Coactivators Essential for Intestinal Homeostasis. PLoS Biology, 2010, 8, e1000539.	5.6	78
15	TCF4 and CDX2, major transcription factors for intestinal function, converge on the same <i>cis</i> regulatory regions. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15157-15162.	7.1	73
16	Cooperative Synergy between NFAT and MyoD Regulates Myogenin Expression and Myogenesis. Journal of Biological Chemistry, 2008, 283, 29004-29010.	3.4	72
17	The E3 ligase RNF43 inhibits Wnt signaling downstream of mutated \hat{l}^2 -catenin by sequestering TCF4 to the nuclear membrane. Science Signaling, 2015, 8, ra90.	3.6	67
18	Integrated genome-wide analysis of transcription factor occupancy, RNA polymerase II binding and steady-state RNA levels identify differentially regulated functional gene classes. Nucleic Acids Research, 2012, 40, 148-158.	14.5	65

#	Article	IF	CITATIONS
19	Mitogen-Activated Protein Kinase-Mediated Disruption of Enhancer-Promoter Communication Inhibits Hepatocyte Nuclear Factor 4α Expression. Molecular and Cellular Biology, 2006, 26, 7017-7029.	2.3	54
20	Smyd3-associated regulatory pathways in cancer. Seminars in Cancer Biology, 2017, 42, 70-80.	9.6	50
21	Crosstalk mechanisms between the WNT signaling pathway and long non-coding RNAs. Non-coding RNA Research, 2018, 3, 42-53.	4.6	47
22	Spontaneous development of hepatocellular carcinoma with cancer stem cell properties in <scp>PR</scp> ― <scp>SET</scp> 7â€deficient livers. EMBO Journal, 2015, 34, 430-447.	7.8	39
23	Efficient Double Fragmentation ChIP-seq Provides Nucleotide Resolution Protein-DNA Binding Profiles. PLoS ONE, 2010, 5, e15092.	2.5	39
24	MAP3K1 functionally interacts with Axin1 in the canonical Wnt signalling pathway. Biological Chemistry, 2010, 391, 171-180.	2.5	33
25	The transcription factor BCL-6 controls early development of innate-like T cells. Nature Immunology, 2020, 21, 1058-1069.	14.5	20
26	Colon Cancer: From Epidemiology to Prevention. Metabolites, 2022, 12, 499.	2.9	16
27	HDAC7 is a major contributor in the pathogenesis of infant t(4;11) proB acute lymphoblastic leukemia. Leukemia, 2021, 35, 2086-2091.	7.2	8
28	Long noncoding RNAs in gut stem cells. Nature Cell Biology, 2018, 20, 1106-1107.	10.3	2
29	Inactivation of AUF1 in Myeloid Cells Protects From Allergic Airway and Tumor Infiltration and Impairs the Adenosine-Induced Polarization of Pro-Angiogenic Macrophages. Frontiers in Immunology, 2022, 13, 752215.	4.8	1