Yi Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1323449/publications.pdf

Version: 2024-02-01

257

all docs

74163 61984 7,440 247 43 citations h-index papers

257

257 8785 docs citations times ranked citing authors

75

g-index

#	Article	IF	CITATIONS
1	Insights into vertical differences of particle number size distributions in winter in Beijing, China. Science of the Total Environment, 2022, 802, 149695.	8.0	4
2	Secondary Formation and Impacts of Gaseous Nitro-Phenolic Compounds in the Continental Outflow Observed at a Background Site in South China. Environmental Science & Environmental Science & 2022, 56, 6933-6943.	10.0	20
3	Molecular Composition of Oxygenated Organic Molecules and Their Contributions to Organic Aerosol in Beijing. Environmental Science & Technology, 2022, 56, 770-778.	10.0	16
4	Recent progress in fluorescent aptasensors for the detection of aflatoxin B1 in food. Analytical Methods, 2022, 14, 86-96.	2.7	10
5	Capillary array electrophoresis imaging of biochemicals in tissue sections. Talanta, 2022, 240, 123183.	5.5	4
6	Study on the reaction of 3-methyl-2-butenal and 3-methylbutanal with Cl atoms: kinetics and reaction mechanism. Journal of Environmental Sciences, 2022, 116, 25-33.	6.1	0
7	Sources of ambient non-methane hydrocarbon compounds and their impacts on O3 formation during autumn, Beijing. Journal of Environmental Sciences, 2022, 114, 85-97.	6.1	10
8	Boosting Toluene Combustion by Tuning Electronic Metal–Support Interactions in In Situ Grown Pt@Co ₃ O ₄ Catalysts. Environmental Science & Environmenta	10.0	94
9	Long-term winter observation of nitrous acid in the urban area of Beijing. Journal of Environmental Sciences, 2022, 114, 334-342.	6.1	5
10	Long-chain alkanes in the atmosphere: A review. Journal of Environmental Sciences, 2022, 114, 37-52.	6.1	15
11	Formation mechanisms of nitrous acid (HONO) during the haze and non-haze periods in Beijing, China. Journal of Environmental Sciences, 2022, 114, 343-353.	6.1	4
12	Chemical composition of different size ultrafine particulate matter measured by nanoparticle chemical ionization mass spectrometer. Journal of Environmental Sciences, 2022, 114, 434-443.	6.1	4
13	Reactions of C ₁₂ –C ₁₄ <i>n</i> >-Alkylcyclohexanes with Cl Atoms: Kinetics and Secondary Organic Aerosol Formation. Environmental Science & Environment	10.0	7
14	Effect of Different Combustion Processes on Atmospheric Nitrous Acid Formation Mechanisms: A Winter Comparative Observation in Urban, Suburban and Rural Areas of the North China Plain. Environmental Science & Environmental	10.0	6
15	Volatility of Cl-Initiated C ₁₂ –C ₁₄ <i>n</i> Polatility of Cl-Initiated C ₁₂ and Photoaging. ACS Earth and Space Chemistry, 2022, 6, 1345-1357.	2.7	1
16	Confining shell-sandwiched Ag clusters in MnO2-CeO2 hollow spheres to boost activity and stability of toluene combustion. Nano Research, 2022, 15, 7042-7051.	10.4	37
17	The Levels and Sources of Nitrous Acid (HONO) in Winter of Beijing and Sanmenxia. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	9
18	Sulfate Formation Apportionment during Winter Haze Events in North China. Environmental Science & Events in North China.	10.0	24

#	Article	IF	Citations
19	Rapid Sulfate Formation via Uncatalyzed Autoxidation of Sulfur Dioxide in Aerosol Microdroplets. Environmental Science & Envir	10.0	22
20	Light absorption properties and potential sources of brown carbon in Fenwei Plain during winter 2018–2019. Journal of Environmental Sciences, 2021, 102, 53-63.	6.1	20
21	Recent advances in fluorescent probes for extracellular pH detection and imaging. Analytical Biochemistry, 2021, 612, 113900.	2.4	28
22	Effect of chemical structure on optical properties of secondary organic aerosols derived from C12 alkanes. Science of the Total Environment, 2021, 751, 141620.	8.0	9
23	A large-scale outdoor atmospheric simulation smog chamber for studying atmospheric photochemical processes: Characterization and preliminary application. Journal of Environmental Sciences, 2021, 102, 185-197.	6.1	15
24	A 3D study on the amplification of regional haze and particle growth by local emissions. Npj Climate and Atmospheric Science, 2021, 4, .	6.8	23
25	Evidence for Strong HONO Emission from Fertilized Agricultural Fields and its Remarkable Impact on Regional O ₃ Pollution in the Summer North China Plain. ACS Earth and Space Chemistry, 2021, 5, 340-347.	2.7	32
26	A substantial increase of analytical throughput in capillary electrophoresis throughput by separation-interrupted sequential injections. Analytical Methods, 2021, 13, 1995-2004.	2.7	4
27	Anthropogenic Effects on Biogenic Secondary Organic Aerosol Formation. Advances in Atmospheric Sciences, 2021, 38, 1053-1084.	4.3	29
28	Important Oxidants and Their Impact on the Environmental Effects of Aerosols. Journal of Physical Chemistry A, 2021, 125, 3813-3825.	2.5	15
29	Rapid Assessment of Cerambycid Beetle Biodiversity in a Tropical Rainforest in Yunnan Province, China, Using a Multicomponent Pheromone Lure. Insects, 2021, 12, 277.	2.2	8
30	Sulfate formation is dominated by manganese-catalyzed oxidation of SO2 on aerosol surfaces during haze events. Nature Communications, 2021, 12, 1993.	12.8	128
31	The Synergistic Role of Sulfuric Acid, Bases, and Oxidized Organics Governing Newâ€Particle Formation in Beijing. Geophysical Research Letters, 2021, 48, e2020GL091944.	4.0	53
32	Exposure to PM2.5 aggravates Parkinson's disease via inhibition of autophagy and mitophagy pathway. Toxicology, 2021, 456, 152770.	4.2	25
33	Enhanced secondary organic aerosol formation from the photo-oxidation of mixed anthropogenic volatile organic compounds. Atmospheric Chemistry and Physics, 2021, 21, 7773-7789.	4.9	12
34	The gas-phase reaction kinetics of different structure of unsaturated alcohols and ketones with O3. Atmospheric Environment, 2021, 254, 118394.	4.1	2
35	Characteristics and source apportionment of volatile organic compounds (VOCs) at a coastal site in Hong Kong. Science of the Total Environment, 2021, 777, 146241.	8.0	40
36	Heterogeneous Formation of HONO Catalyzed by CO ₂ . Environmental Science & Environmental Sci	10.0	16

#	Article	IF	CITATIONS
37	Boosting benzene combustion by engineering oxygen vacancy-mediated Ag/CeO2-Co3O4 catalyst via interfacial electron transfer. Journal of Colloid and Interface Science, 2021, 594, 882-890.	9.4	55
38	Reaction mechanism and kinetics of Criegee intermediate and hydroperoxymethyl formate. Journal of Environmental Sciences, 2021, 105, 128-137.	6.1	6
39	Photocatalytic Oxidation of SO ₂ by TiO ₂ : Aerosol Formation and the Key Role of Gaseous Reactive Oxygen Species. Environmental Science & Environmental Sc	10.0	25
40	Comparative observation of atmospheric nitrous acid (HONO) in Xi'an and Xianyang located in the GuanZhong basin of western China. Environmental Pollution, 2021, 289, 117679.	7.5	4
41	Metal organic framework-templated fabrication of exposed surface defect-enriched Co3O4 catalysts for efficient toluene oxidation. Journal of Colloid and Interface Science, 2021, 603, 695-705.	9.4	42
42	Recent progress in natural product-based inhibitor screening with enzymatic fluorescent probes. Analytical Methods, 2021, 13, 1778-1787.	2.7	2
43	Evaluation of Apigenin Inhibiting Lactate Dehydrogenase Activity Based on CdTe Quantum Dots Fluorescence. Journal of Biomedical Nanotechnology, 2021, 17, 1806-1811.	1.1	1
44	A Combined Experimental and Theoretical Study on the Gas Phase Reaction of OH Radicals with Ethyl Propyl Ether. Journal of Physical Chemistry A, 2020, 124, 721-730.	2.5	7
45	Heterogeneous Uptake of Formic Acid and Acetic Acid on Mineral Dust and Coal Fly Ash. ACS Earth and Space Chemistry, 2020, 4, 202-210.	2.7	8
46	Biocatalytic Amplification of UV Signal in Capillary Electrophoresis of MicroRNA. International Journal of Molecular Sciences, 2020, 21, 51.	4.1	5
47	Evaluation and impact factors of indoor and outdoor gas-phase nitrous acid under different environmental conditions. Journal of Environmental Sciences, 2020, 95, 165-171.	6.1	11
48	Continuous and comprehensive atmospheric observations in Beijing: a station to understand the complex urban atmospheric environment. Big Earth Data, 2020, 4, 295-321.	4.4	54
49	Different HONO Sources for Three Layers at the Urban Area of Beijing. Environmental Science & Emp; Technology, 2020, 54, 12870-12880.	10.0	52
50	Borohydride catalyzed redistribution reaction of hydrosilane and chlorosilane: a potential system for facile preparation of hydrochlorosilanes. RSC Advances, 2020, 10, 17404-17407.	3.6	2
51	Pollution characteristics and potential sources of nitrous acid (HONO) in early autumn 2018 of Beijing. Science of the Total Environment, 2020, 735, 139317.	8.0	27
52	A stable version of capillary electrophoresis for determining human hemoglobin chains aiming at the screening and diagnosis of thalassemia. Analytical Methods, 2020, 12, 3277-3284.	2.7	2
53	Preparation of Monolayer Photonic Crystals from Ag Nanobulge-Deposited SiO2 Particles as Substrates for Reproducible SERS Assay of Trace Thiol Pesticide. Nanomaterials, 2020, 10, 1205.	4.1	13
54	Study on ozonolysis of asymmetric alkenes with matrix isolation and FT-IR spectroscopy. Chemosphere, 2020, 252, 126413.	8.2	2

#	Article	IF	CITATIONS
55	Environmental Processing of Short-Chain Fatty Alcohols Induced by Photosensitized Chemistry of Brown Carbons. ACS Earth and Space Chemistry, 2020, 4, 631-640.	2.7	14
56	Kinetic and mechanism studies of the ozonolysis of three unsaturated ketones. Journal of Environmental Sciences, 2020, 95, 23-32.	6.1	3
57	Recent developments of fluorescent probes for detection and bioimaging of nitric oxide. Nitric Oxide - Biology and Chemistry, 2020, 98, 1-19.	2.7	54
58	Advances in fluorescent probes for detection and imaging of endogenous tyrosinase activity. Analytical Biochemistry, 2020, 594, 113614.	2.4	21
59	Effects of NO2 and SO2 on the heterogeneous reaction of acetic acid on α-Al2O3 in the presence and absence of simulated irradiation. Environmental Sciences: Processes and Impacts, 2020, 22, 408-417.	3 . 5	3
60	Hydrothermal Synthesis of a Novel Doubleâ€Sided Nanobrush Co ₃ O ₄ Catalyst and Its Catalytic Performance for Benzene Oxidation. ChemCatChem, 2019, 11, 1214-1221.	3.7	30
61	Enhanced fluoride removal behaviour and mechanism by dicalcium phosphate from aqueous solution. Environmental Technology (United Kingdom), 2019, 40, 3668-3677.	2.2	9
62	Development of stripping coil-ion chromatograph method and intercomparison with CEAS and LOPAP to measure atmospheric HONO. Science of the Total Environment, 2019, 646, 187-195.	8.0	36
63	Variations and sources of nitrous acid (HONO) during a severe pollution episode in Beijing in winter 2016. Science of the Total Environment, 2019, 648, 253-262.	8.0	62
64	Development and application of the multi-wavelength cavity ring-down aerosol extinction spectrometer. Journal of Environmental Sciences, 2019, 76, 227-237.	6.1	10
65	Characteristics of wintertime VOCs in suburban and urban Beijing: concentrations, emission ratios, and festival effects. Atmospheric Chemistry and Physics, 2019, 19, 8021-8036.	4.9	55
66	Design and construction of COX-2 specific fluorescent probes. Molecular and Cellular Probes, 2019, 48, 101472.	2.1	11
67	Facile self-assembly synthesis of \hat{I}^3 -Fe2O3 /graphene oxide for enhanced photo-Fenton reaction. Environmental Pollution, 2019, 248, 229-237.	7.5	59
68	A bi-end injection capillary electrophoresis method for simultaneous determination of 37 cations and anions in beers. Analytical and Bioanalytical Chemistry, 2019, 411, 4113-4121.	3.7	14
69	Sensing ultra-trace dopamine by restoration of fluorescence on locally acidified gold nanoparticles. Analyst, The, 2019, 144, 4477-4482.	3 . 5	6
70	Adsorption and Photodegradation of Acetaldehyde and Ethylene on TiO2 (001) Surface: Experimental and First Principle Studies. Catalysis Letters, 2019, 149, 2728-2738.	2.6	9
71	Defect Chemistry of Er ³⁺ -Doped TiO ₂ and Its Photocatalytic Activity for the Degradation of Flowing Gas-Phase VOCs. Journal of Physical Chemistry C, 2019, 123, 12321-12334.	3.1	83
72	Oneâ€pot sample preparation approach for profiling spatial distribution of gibberellins in a single shoot of germinating cereal seeds. Plant Journal, 2019, 99, 1014-1024.	5.7	7

#	Article	IF	CITATIONS
73	Hygroscopicity and Compositional Evolution of Atmospheric Aerosols Containing Water-Soluble Carboxylic Acid Salts and Ammonium Sulfate: Influence of Ammonium Depletion. Environmental Science & Echnology, 2019, 53, 6225-6234.	10.0	29
74	A new SiC precursor with high ceramic yield: Synthesis and characterization of CH _x MeSiH ₂ â€containing poly(methylsilaneâ€carbosilane). Journal of Applied Polymer Science, 2019, 136, 47618.	2.6	5
75	One-Pot Synthesis of High-Quality Bimagnetic Core/Shell Nanocrystals with Diverse Exchange Coupling. Journal of the American Chemical Society, 2019, 141, 3366-3370.	13.7	26
76	Review of Chinese atmospheric science research over the past 70 years: Atmospheric physics and atmospheric environment. Science China Earth Sciences, 2019, 62, 1903-1945.	5.2	18
77	Regulatory-sequence mechanical biosensor: A versatile platform for investigation of G-quadruplex/label-free protein interactions and tunable protein detection. Analytica Chimica Acta, 2019, 1045, 1-9.	5.4	5
78	Defective Mn <i>>_x</i> Zr _{1â€"<i>x</i>} O ₂ Solid Solution for the Catalytic Oxidation of Toluene: Insights into the Oxygen Vacancy Contribution. ACS Applied Materials & Amp; Interfaces, 2019, 11, 730-739.	8.0	244
79	Stability of Polydopamine Coatings on Gold Substrates Inspected by Surface Plasmon Resonance Imaging. Langmuir, 2018, 34, 3565-3571.	3.5	62
80	Kinetic study of the gas-phase reaction of O3 with three unsaturated alcohols. Journal of Environmental Sciences, 2018, 71, 292-299.	6.1	7
81	The influence of relative humidity on the heterogeneous oxidation of sulfur dioxide by ozone on calcium carbonate particles. Science of the Total Environment, 2018, 633, 1253-1262.	8.0	30
82	Gas-Phase Oxidation of Allyl Acetate by O3, OH, Cl, and NO3: Reaction Kinetics and Mechanism. Journal of Physical Chemistry A, 2018, 122, 1600-1611.	2.5	9
83	Insights into adsorption mechanism for fluoride on cactus-like amorphous alumina oxide microspheres. Chemical Engineering Journal, 2018, 345, 252-259.	12.7	70
84	The Optical Properties of Limonene Secondary Organic Aerosols: The Role of NO 3 , OH, and O 3 in the Oxidation Processes. Journal of Geophysical Research D: Atmospheres, 2018, 123, 3292-3303.	3.3	25
85	Surface plasmon resonance sensing with adjustable sensitivity based on a flexible liquid core coupling unit. Talanta, 2018, 184, 468-474.	5 . 5	14
86	Superelastic and ultralight polyimide aerogels as thermal insulators and particulate air filters. Journal of Materials Chemistry A, 2018, 6, 828-832.	10.3	113
87	Effect of Titanium Dioxide on Secondary Organic Aerosol Formation. Environmental Science & Emp; Technology, 2018, 52, 11612-11620.	10.0	14
88	Evaluation of poly(methylsilaneâ€carbosilane) synthesized from methylâ€dichlorosilane and chloromethyldichloromethylsilane as a precursor for SiC. Journal of Applied Polymer Science, 2018, 135, 46610.	2.6	2
89	Facile derivatization of ultratrace carboxylic acids in saliva for quantification by HPLC–MS/MS. Analytical and Bioanalytical Chemistry, 2018, 410, 4293-4300.	3.7	11
90	The formation and growth of calcium sulfate crystals through oxidation of SO ₂ by O ₃ on size-resolved calcium carbonate. RSC Advances, 2018, 8, 16285-16293.	3.6	9

#	Article	IF	Citations
91	Heterogeneous Reaction of HCOOH on NaCl Particles at Different Relative Humidities. Journal of Physical Chemistry A, 2018, 122, 7218-7226.	2.5	3
92	Self-Catalytic Reaction of SO ₃ and NH ₃ To Produce Sulfamic Acid and Its Implication to Atmospheric Particle Formation. Journal of the American Chemical Society, 2018, 140, 11020-11028.	13.7	86
93	Clustering mechanism of oxocarboxylic acids involving hydration reaction: Implications for the atmospheric models. Journal of Chemical Physics, 2018, 148, 214303.	3.0	22
94	Novel Al-doped carbon nanotubes with adsorption and coagulation promotion for organic pollutant removal. Journal of Environmental Sciences, 2017, 54, 1-12.	6.1	104
95	Optical properties of secondary organic aerosols derived from long-chain alkanes under various NOx and seed conditions. Science of the Total Environment, 2017, 579, 1699-1705.	8.0	18
96	A fluorescent dye with large Stokes shift and high stability: synthesis and application to live cell imaging. RSC Advances, 2017, 7, 7604-7609.	3.6	137
97	Hygroscopic properties of potassium chloride and its internal mixtures with organic compounds relevant to biomass burning aerosol particles. Scientific Reports, 2017, 7, 43572.	3.3	38
98	The effects of coexisting Na2SO4 on heterogeneous uptake of NO2 on CaCO3 particles at various RHs. Science of the Total Environment, 2017, 586, 930-938.	8.0	25
99	Quantification of nearâ€attomole gibberellins in floral organs dissected from a single <i>Arabidopsis thaliana</i> flower. Plant Journal, 2017, 91, 547-557.	5.7	22
100	Hygroscopic behavior of water-soluble matter in marine aerosols over the East China Sea. Science of the Total Environment, 2017, 578, 307-316.	8.0	14
101	Evaluating the effectiveness of joint emission control policies on the reduction of ambient VOCs: Implications from observation during the 2014 APEC summit in suburban Beijing. Atmospheric Environment, 2017, 164, 117-127.	4.1	39
102	Interface effect of mixed phase $Pt/ZrO < sub > 2 < / sub > catalysts for HCHO oxidation at ambient temperature. Journal of Materials Chemistry A, 2017, 5, 13799-13806.$	10.3	128
103	Removal of fluoride from aqueous solution by Mg-Al-Zr triple-metal composite. Chemical Engineering Journal, 2017, 322, 246-253.	12.7	93
104	Highly active and stable interface derived from Pt supported on Ni/Fe layered double oxides for HCHO oxidation. Catalysis Science and Technology, 2017, 7, 1573-1580.	4.1	69
105	Dualâ€Phase Separation in a Semiconfined System: Monodispersed Heterogeneous Blockâ€Copolymer Membranes for Cell Encoding and Patterning. Advanced Materials, 2017, 29, 1605932.	21.0	10
106	Enhanced Light Scattering of Secondary Organic Aerosols by Multiphase Reactions. Environmental Science & Environmental Science	10.0	29
107	Atmospheric oxidation of selected chlorinated alkenes by O 3 , OH, NO 3 and Cl. Atmospheric Environment, 2017, 170, 12-21.	4.1	5
108	Gas-Phase Reaction of Methyl <i>n</i> -Propyl Ether with OH, NO ₃ , and Cl: Kinetics and Mechanism. Journal of Physical Chemistry A, 2017, 121, 6800-6809.	2.5	14

#	Article	lF	CITATIONS
109	Surface Plasmon Resonance Imaging Detection of Sub-femtomolar MicroRNA. Analytical Chemistry, 2017, 89, 10071-10077.	6.5	39
110	Morphology-dependent properties and adsorption performance of CeO2 for fluoride removal. Chemical Engineering Journal, 2017, 330, 36-43.	12.7	136
111	A molecular-scale study on the role of lactic acid in new particle formation: Influence of relative humidity and temperature. Atmospheric Environment, 2017, 166, 479-487.	4.1	42
112	Gas-phase hydration of glyoxylic acid: Kinetics and atmospheric implications. Chemosphere, 2017, 186, 430-437.	8.2	31
113	Electronic Properties and Dissociative Photoionization of Thiocyanates, Part III. The Effect of the Group's Electronegativity in the Valence and Shallow-Core (Sulfur and Chlorine 2p) Regions of CCl ₃ SCN and CCl ₂ FSCN. Journal of Physical Chemistry A, 2017, 121, 9201-9210.	2.5	3
114	Temperature dependence of the heterogeneous uptake of acrylic acid on Arizona test dust. Journal of Environmental Sciences, 2017, 53, 107-112.	6.1	6
115	Fabrication of Bio-function-Preserved Saccharide Microarray Chips with Cyanuric Chloride as a Rotatable Linker. Methods in Molecular Biology, 2017, 1518, 29-42.	0.9	1
116	Heterogeneous Uptake of Gasâ€Phase Acetic Acid on the Surface of αâ€Al ₂ O ₃ Particles: Temperature Effects. Chemistry - an Asian Journal, 2016, 11, 2749-2755.	3.3	11
117	Amphiphilic Janus Particles Generated via a Combination of Diffusionâ€Induced Phase Separation and Magnetically Driven Dewetting and Their Synergistic Selfâ€Assembly. Advanced Materials, 2016, 28, 3131-3137.	21.0	74
118	Specific interaction of platinated DNA and proteins by surface plasmon resonance imaging. RSC Advances, 2016, 6, 21900-21906.	3.6	10
119	Red fluorescent chitosan nanoparticles grafted with poly(2-methacryloyloxyethyl) Tj ETQq1 1 0.784314 rgBT /Ov	erlock 10°	Tf 50 342 Td
120	Chemical Strategy to Stepwise Amplification of Signals in Surface Plasmon Resonance Imaging Detection of Saccharides and Glycoconjugates. Analytical Chemistry, 2016, 88, 10011-10018.	6.5	19
121	An experimental kinetic study and products research of the reactions of O3 with a series of unsaturated alcohols. Atmospheric Environment, 2016, 145, 455-467.	4.1	9
122	Mechanism and Kinetics of Heterogeneous Reactions of Unsaturated Organic Acids on αâ€Al ₂ O ₃ and CaCO ₃ . ChemPhysChem, 2016, 17, 3515-3523.	2.1	4
123	Likely Aggregation-Sex Pheromones of the Invasive Beetle <i>Callidiellum villosulum</i> , and the Related Asian Species <i>Allotraeus asiaticus</i> , <i>Semanotus bifasciatus</i> , and <i>Xylotrechus buqueti</i> (Coleoptera: Cerambycidae). Journal of Economic Entomology, 2016, 109, 2243-2246.	1.8	18
124	Mass-Dependent and -Independent Fractionation of Mercury Isotope during Gas-Phase Oxidation of Elemental Mercury Vapor by Atomic Cl and Br. Environmental Science & Echnology, 2016, 50, 9232-9241.	10.0	143
125	A universal strategy for direct immobilization of intact bioactivity-conserved carbohydrates on gold nanoparticles. RSC Advances, 2016, 6, 85333-85339.	3.6	11
126	Heterogeneous reactions of NO ₂ with CaCO ₃ 倓(NH ₄)< mixtures at different relative humidities. Atmospheric Chemistry and Physics, 2016, 16, 8081-8093.	su b& amp;	gt52 </td

#	Article	IF	Citations
127	Ratiometric Fluorescent Pattern for Sensing Proteins Using Aqueous Polymer-Pyrene (1³-Cyclodextrin Inclusion Complexes. Analytical Chemistry, 2016, 88, 1821-1826.	6.5	29
128	Strategy To Fabricate Naked-Eye Readout Ultrasensitive Plasmonic Nanosensor Based on Enzyme Mimetic Gold Nanoclusters. Analytical Chemistry, 2016, 88, 1412-1418.	6.5	66
129	Exploring the nitrous acid (HONO) formation mechanism in winter Beijing: direct emissions and heterogeneous production in urban and suburban areas. Faraday Discussions, 2016, 189, 213-230.	3.2	77
130	Heterogeneous uptake of gaseous hydrogen peroxide on mineral dust. Journal of Environmental Sciences, 2016, 40, 44-50.	6.1	11
131	Generation, Characterization, and Application of Hierarchically Structured Self-Assembly Induced by the Combined Effect of Self-Emulsification and Phase Separation. Journal of the American Chemical Society, 2016, 138, 2090-2093.	13.7	29
132	Water uptake of multicomponent organic mixtures and their influence on hygroscopicity of inorganic salts. Journal of Environmental Sciences, 2016, 45, 156-163.	6.1	11
133	Direct Derivatization and Quantitation of Ultra-trace Gibberellins in Sub-milligram Fresh Plant Organs. Molecular Plant, 2016, 9, 175-177.	8.3	21
134	Prionic Acid: An Effective Sex Attractant for an Important Pest of Sugarcane, <i>Dorysthenes granulosus </i> (Coleoptera: Cerambycidae: Prioninae). Journal of Economic Entomology, 2016, 109, 484-486.	1.8	11
135	Identification of a Male-Produced Pheromone Component of the Citrus Longhorned Beetle, Anoplophora chinensis. PLoS ONE, 2015, 10, e0134358.	2.5	32
136	Template-free synthesis of 3D hierarchical amorphous aluminum oxide microspheres with broccoli-like structure and their application in fluoride removal. RSC Advances, 2015, 5, 19159-19165.	3.6	35
137	Heterogeneous uptake of nitrogen dioxide on Chinese mineral dust. Journal of Environmental Sciences, 2015, 38, 110-118.	6.1	16
138	One-step fabrication and characterization of hierarchical MgFe2O4 microspheres and their application for lead removal. Microporous and Mesoporous Materials, 2015, 207, 170-178.	4.4	84
139	Comparisons of measured nitrous acid (HONO) concentrations in a pollution period at urban and suburban Beijing, in autumn of 2014. Science China Chemistry, 2015, 58, 1393-1402.	8.2	41
140	Preparation of biocompatible and photostable PEGylated red fluorescent nanoparticles for cellular imaging. Polymer Chemistry, 2015, 6, 5891-5898.	3.9	18
141	Photoelectron Spectroscopy and Ionic Fragmentation of OSeCl ₂ and Its Analogue OSCl ₂ under VUV Irradiation. Journal of Physical Chemistry A, 2015, 119, 8000-8009.	2.5	0
142	Sensitive and selective determination of polycyclic aromatic hydrocarbons in mainstream cigarette smoke using a graphene-coated solid-phase microextraction fiber prior to GC/MS. Talanta, 2015, 140, 102-108.	5.5	36
143	Gas-phase reaction of two unsaturated ketones with atomic Cl and O ₃ : kinetics and products. Physical Chemistry Chemical Physics, 2015, 17, 12000-12012.	2.8	24
144	Acid-catalyzed heterogeneous reaction of 3-methyl-2-buten-1-ol with hydrogen peroxide. Journal of Environmental Sciences, 2015, 31, 89-97.	6.1	4

#	Article	IF	Citations
145	Preparation of an amino acid-based polymer monolith for trimodal liquid chromatography. RSC Advances, 2015, 5, 61436-61439.	3.6	7
146	Functional analysis of synthetic DELLA domain peptides and bioactive gibberellin assay using surface plasmon resonance technology. Talanta, 2015, 144, 502-509.	5. 5	4
147	Two-photon pumped emission of polymeric thin film doped with dicyanopyranone derivative. RSC Advances, 2015, 5, 20712-20715.	3.6	3
148	Simultaneous determination of electrophoretic and dielectrophoretic mobilities of human red blood cells. Electrophoresis, 2015, 36, 1507-1513.	2.4	1
149	Synthesis and characterization of Mg–Fe–La trimetal composite as an adsorbent for fluoride removal. Chemical Engineering Journal, 2015, 264, 506-513.	12.7	127
150	Fast Assembly of Anti-Voltage Photonic Crystals in Microfluidic Channels for Ultrafast Separation of Amino Acids and Peptides. Methods in Molecular Biology, 2015, 1274, 119-135.	0.9	2
151	Knudsen cell and smog chamber study of the heterogeneous uptake of sulfur dioxide on Chinese mineral dust. Journal of Environmental Sciences, 2014, 26, 2423-2433.	6.1	20
152	Red emissive cross-linked chitosan and their nanoparticles for imaging the nucleoli of living cells. Carbohydrate Polymers, 2014, 102, 699-707.	10.2	47
153	Ultrafast coating procedure for graphene on solid-phase microextraction fibers. Talanta, 2014, 119, 517-523.	5.5	34
154	Organic hydroperoxide formation in the acid-catalyzed heterogeneous oxidation of aliphatic alcohols with hydrogen peroxide. RSC Advances, 2014, 4, 19716-19724.	3.6	6
155	Photoactivatable turn-on fluorescence based on the photo-cleavage of the C–Br bond in 1,2-bis(5-(bromoethyl)benzoxazol-2-yl)ethane. New Journal of Chemistry, 2014, 38, 3468.	2.8	2
156	One-pot synthesis of porous magnetic cellulose beads for the removal of metal ions. RSC Advances, 2014, 4, 31362.	3.6	32
157	Optical properties of secondary organic aerosols generated by photooxidation of aromatic hydrocarbons. Scientific Reports, 2014, 4, 4922.	3.3	48
158	Removal of fluoride from drinking water by cellulose@hydroxyapatite nanocomposites. Carbohydrate Polymers, 2013, 92, 269-275.	10.2	166
159	Heterogeneous Reaction of NO ₂ on Al ₂ O ₃ : The Effect of Temperature on the Nitrite and Nitrate Formation. Journal of Physical Chemistry A, 2013, 117, 4937-4944.	2.5	54
160	One-step synthesis of magnetic composites of cellulose@iron oxide nanoparticles for arsenic removal. Journal of Materials Chemistry A, 2013, 1, 959-965.	10.3	296
161	Design and Fabrication of a Three Dimensional Spiral Micromixer. Chinese Journal of Chemistry, 2013, 31, 209-214.	4.9	38
162	Controllable synthesis of supported Cuâ€"M (M =Pt, Pd, Ru, Rh) bimetal nanocatalysts and their catalytic performances. Journal of Materials Chemistry, 2012, 22, 9117.	6.7	41

#	Article	IF	Citations
163	A Passive Mixer with Changeable Mixing Mechanism. Chinese Journal of Chemistry, 2012, 30, 1793-1796.	4.9	1
164	One-pot photochemical synthesis of graphene composites uniformly deposited with silver nanoparticles and their high catalytic activity towards the reduction of 2-nitroaniline. Journal of Materials Chemistry, 2012, 22, 7245.	6.7	158
165	Thermal responsive fluorescent block copolymer for intracellular temperature sensing. Journal of Materials Chemistry, 2012, 22, 11543.	6.7	41
166	Modulation of absorption and fluorescence of photochromic diarylethene by intramolecular hydrogen bond. Journal of Physical Organic Chemistry, 2012, 25, 142-146.	1.9	9
167	Rapid fading of 3H-naphtho[2,1-b]pyrans with protonation of N,N-disubstituted group. Journal of Materials Chemistry, 2011, 21, 12402.	6.7	4
168	The first nonmetal-centered binuclear sandwich-like complexes based on the tetraatomic species E2â^'4 (E = N, P, As, Sb, Bi) and boron atoms. New Journal of Chemistry, 2011, 35, 2527.	2.8	4
169	A novel polychloromethylstyrene coated superparamagnetic surface molecularly imprinted core–shell nanoparticle for bisphenol A. Journal of Materials Chemistry, 2011, 21, 9232.	6.7	90
170	Kinetics of the gas-phase reactions of some unsaturated alcohols with Cl atoms and O3. Atmospheric Environment, 2011, 45, 53-59.	4.1	21
171	CeO2–WO3 Mixed Oxides for the Selective Catalytic Reduction of NO x by NH3 Over a Wide Temperature Range. Catalysis Letters, 2011, 141, 1859-1864.	2.6	132
172	Temperature dependent kinetics of the gas-phase reaction of OH radicals with EMS. Science Bulletin, 2011, 56, 391-396.	1.7	2
173	Uptake of gas-phase alkylamines by sulfuric acid. Science Bulletin, 2011, 56, 1241-1245.	1.7	10
174	Uptake kinetics of 3-buten-1-ol, 4-penten-1-ol and 3-methyl-3-buten-1-ol into sulfuric acid solutions. Science Bulletin, 2011, 56, 1352-1356.	1.7	1
175	Modulation of color change and photocyclization of diarylethene with metal complex. Journal of Physical Organic Chemistry, 2011, 24, 517-521.	1.9	9
176	Construction and Properties of a Phototriggered Cd ²⁺ Release System. European Journal of Organic Chemistry, 2011, 2011, 1346-1350.	2.4	5
177	Rate Acceleration of the Baylisâ€Hillman Reaction within Microreactors. Chinese Journal of Chemistry, 2011, 29, 2385-2388.	4.9	5
178	MB 8 2â^' (M = Be, Mg, Ca, Sr, and Ba): Planar octacoordinate alkaline earth metal atoms enclosed by boron rings. Science China Chemistry, 2010, 53, 1737-1745.	8.2	15
179	Photoelectron spectroscopy of terpenoids and prediction of their rate constants in atmospheric oxidation reactions. Science Bulletin, 2010, 55, 4018-4025.	1.7	7
180	Carbazole tricationic salt: A novel potential two-photon fluorescent DNA probe for nucleic imaging of cells. Science Bulletin, 2010, 55, 3661-3667.	1.7	7

#	Article	IF	Citations
181	Two-photon absorption of photochromic diarylethene and its application to rewritable holographic recording. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2010, 5, 221-225.	0.4	3
182	†Locking and unlocking control' of photochromism of naphthopyran derivative. Journal of Physical Organic Chemistry, 2010, 23, 207-210.	1.9	10
183	The protonâ€coupled proton transfer mechanism, H ₂ 0 catalysis, and hydrogen tunneling effects in the reaction of HNCH ₂ with HCOOH in the interstellar medium. International Journal of Quantum Chemistry, 2010, 110, 2671-2682.	2.0	11
184	Chiral Separation of Calcium (â^')-2(S)-2-Benzyl-4-oxo-4-(cis-hexahydro-2-isoindolinyl)butyrate Enantiomers by High-performance Liquid Chromatography. Chinese Journal of Chemistry, 2009, 27, 29-32.	4.9	0
185	A Bifunctional Metal Probe with Independent Signal Outputs and Regulable Detection Limits. European Journal of Organic Chemistry, 2009, 2009, 5261-5265.	2.4	29
186	A Self-Assembled 3D Hydrogen Bonded Network Constructed from Polyoxovanadate and Protonated Organic Substrate With a Solvent Hydrolysis Reaction. Journal of Cluster Science, 2009, 20, 717-724.	3.3	7
187	Electron structure and substituent effects in o-, m-, p-IC6H4OCH3 iodoanisoles. Science in China Series B: Chemistry, 2009, 52, 1932-1937.	0.8	3
188	Kinetic study of the reaction of chlorine atoms with 3-methyl-3-buten-1-ol. Science Bulletin, 2009, 54, 3808-3812.	1.7	8
189	Synthesis, structure and superoxide dismutase activity of two self-assembly transition metal complexes containing a tridentate amino-Schiff base deviating from salicylaldehyde with glycine. Science Bulletin, 2009, 54, 3508-3514.	9.0	5
190	Smog chamber studies of ozone formation potentials for isopentane. Science Bulletin, 2009, 54, 4624-4632.	9.0	10
191	Reaction between sulfur dioxide and iron oxide cationic clusters. Science Bulletin, 2009, 54, 4017-4020.	1.7	7
192	Rate constants for the gas phase reaction of ozone with n-butyl acrylate and ethyl methacrylate. Chemical Physics Letters, 2009, 473, 57-60.	2.6	23
193	On-Line Preconcentration and Analysis of Metribuzin Residues in Corn Fields by Use of a Molecularly Imprinted Polymer. Chromatographia, 2009, 69, 615-619.	1.3	15
194	Binuclear Cyclopentadienylmolybdenum Carbonyl Derivatives: Where is the Missing Moâ•Mo Double-Bonded Species Cp ₂ Mo ₂ (CO) ₅ ?. Organometallics, 2009, 28, 2818-2829.	2.3	5
195	Two complexes (Cu, Zn) with 1,10-phenanthroline and a tridentate amino-Schiff-base: crystal structures, spectra, thermogravimetric analyses and superoxide dismutase activity. Journal of Coordination Chemistry, 2009, 62, 745-756.	2.2	23
196	Acryloyl Chloride and Acryloyl Isocyanate (CH $<$ sub $>$ 2 $<$ /sub $>$ â \cdot CHC(O)X, X = Cl, NCO): A Hel Photoelectron Spectroscopy and Theoretical Study. Journal of Physical Chemistry A, 2009, 113, 3108-3115.	2.5	6
197	A novel glycidyl methacrylate-based monolith with sub-micron skeletons and well-defined macropores. Journal of Materials Chemistry, 2009, 19, 767-772.	6.7	75
198	Photochromic Properties of Naphthopyrans – PMMA Thin Film. Molecular Crystals and Liquid Crystals, 2009, 501, 62-71.	0.9	8

#	Article	IF	CITATIONS
199	Promotional Effect of Ce-doped V ₂ O ₅ -WO ₃ /TiO ₂ with Low Vanadium Loadings for Selective Catalytic Reduction of NO <i>_x</i> by NH ₃ . Journal of Physical Chemistry C, 2009, 113, 21177-21184.	3.1	430
200	Magnetic Ni/SiO2composite microcapsules prepared by one-pot synthesis. Journal of Materials Chemistry, 2009, 19, 1245-1251.	6.7	15
201	Study on the atmospheric photochemical reaction of CF3 radicals using ultraviolet photoelectron and photoionization mass spectrometer. Science in China Series B: Chemistry, 2008, 51, 316-321.	0.8	4
202	The uptake of ethyl iodide on black carbon surface. Science Bulletin, 2008, 53, 733-738.	1.7	3
203	Experimental and theoretical studies of the reaction between cationic vanadium oxide clusters and acetylene. Science Bulletin, 2008, 53, 3829-3838.	9.0	10
204	Rate constants for the reaction of ozone with n-butyl, s-butyl and t-butyl methyl sulfides. Science Bulletin, 2008, 53, 3620-3625.	1.7	3
205	Gasâ€Phase Generation and Electronic Structure Investigation of Oxidovanadium Triisocyanate, OV(NCO) < sub > 3 < /sub > . European Journal of Inorganic Chemistry, 2008, 2008, 1518-1522.	2.0	0
206	Gas-Phase Generation, Structure, Spectroscopy, and Quantum Chemical Calculations of Fluorocarbonylsulfur Thiocyanate, FC(O)SSCN. European Journal of Inorganic Chemistry, 2008, 2008, 3987-3995.	2.0	8
207	Substituent effect on electronic structures of halonitrobenzenes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008, 71, 1499-1502.	3.9	6
208	Sample preparation. Journal of Chromatography A, 2008, 1184, 191-219.	3.7	291
209	Construction and photoswitching properties of fluorescent diarylethenes. Journal of Materials Chemistry, 2007, 17, 861-865.	6.7	25
210	Bleaching kinetics of indoly-benzylfulgimide in PMMA. Physica Status Solidi (B): Basic Research, 2007, 244, 1363-1375.	1.5	2
211	Electronic Structure and Photoionization and Dissociation Processes of Bis(trifluoromethoxy)disulfurylperoxide, CF3OS(O)2OOS(O)2OCF3. Journal of Physical Chemistry A, 2007, 111, 13425-13431.	2.5	1
212	Two Novel Species, (Methoxycarbonyl)sulfenyl Thiocyanate and (Methoxycarbonyl)sulfenyl Selenocyanate: Spectroscopic Characterization by Photoelectron Spectroscopy and Quantum Chemical Investigation. European Journal of Inorganic Chemistry, 2007, 2007, 4514-4519.	2.0	9
213	Oxidation of 3,4â€Diarylâ€2,5â€dihydrothiophenes to 3,4â€Diarylthiophenes Using CuBr ₂ : Simple and Efficient Preparation of 3,4â€Diarylthiophenes. European Journal of Organic Chemistry, 2007, 2007, 5661-5664.	2.4	19
214	Absorbance kinetics of dye-doped systems with photochemical first order kinetics. Physica Status Solidi (B): Basic Research, 2007, 244, 2138-2150.	1.5	7
215	Experimental investigation of incremental reactivity of di-tert-butyl peroxide. Science Bulletin, 2007, 52, 1629-1634.	1.7	3
216	Fast and accurate measurement of diffusion coefficient by Taylor's dispersion analysis. Science Bulletin, 2007, 52, 3325-3332.	1.7	23

#	Article	IF	CITATIONS
217	A novel heterogeneous reaction for generating gaseous nitrous acid. Science Bulletin, 2007, 52, 3056-3060.	1.7	4
218	Two addressable fluorescent switches based on a photochromic diarylethene. Journal of Materials Chemistry, 2006, 16, 982.	6.7	25
219	Combination of fluorescent switch and electrochemical switch based on a photochromic diarylethene. New Journal of Chemistry, 2006, 30, 1595.	2.8	35
220	Synthesis, spectra, structure and quantum chemistry study on two novel oxovanadium complexes with hydrotris (pyrazolyl) borate ligands. Science Bulletin, 2006, 51, 661-667.	1.7	8
221	A kinetic study of the reaction of ozone with ethylene in a smog chamber under atmospheric conditions. Science Bulletin, 2006, 51, 2839-2843.	1.7	24
222	First Experimental Observation of Gas-Phase Nitrosyl Thiocyanate. European Journal of Inorganic Chemistry, 2006, 2006, 2469-2475.	2.0	21
223	Chiral recognition of dextran sulfate with d- and l-cystine studied by multiwavelength surface plasmon resonance. Carbohydrate Research, 2005, 340, 2024-2029.	2.3	6
224	Chiral ion-exchange capillary electrochromatography of arylglycine amides with dextran sulfate as a pseudostationary phase. Electrophoresis, 2005, 26, 833-840.	2.4	12
225	Synthesis, Structure Characterization, and Quantum Chemistry of a Discrete Cluster $[\{Zn(2,2\hat{a}\in^2-bipy)3\}2V4O12]\hat{A}\cdot11H2O(2,2\hat{a}\in^2-bipy=2,2\hat{a}\in^2-bipyridine)$. Synthesis and Reactivity in Inorganic, Me Organic, and Nano Metal Chemistry, 2005, 35, 747-753.	tad.6	3
226	Optical Properties and Applications of Photochromic Fulgides. Molecular Crystals and Liquid Crystals, 2005, 430, 211-219.	0.9	21
227	Modulation of a fluorescent switch based on a controllable photochromic diarylethene shutter. Journal of Materials Chemistry, 2005, 15, 3229.	6.7	34
228	Study on Photochromism of Diarylethenes with a 2,5-Dihydropyrrole Bridging Unit:Â A Convenient Preparation of 3,4-Diarylpyrroles from 3,4-Diaryl-2,5-dihydropyrroles. Journal of Organic Chemistry, 2005, 70, 5001-5005.	3.2	133
229	Chiral Separation and Enantiomeric Purity Determination of Pazufloxacin Mesilate by HPLC Using Chiral Mobile Phase Additives. Journal of Liquid Chromatography and Related Technologies, 2004, 27, 813-827.	1.0	13
230	A Selective, Fluorescent Sensor for Zn2+. ChemPhysChem, 2004, 5, 564-566.	2.1	18
231	Study on Photochromic Diarylethene with Phenolic Schiff Base:Â Preparation and Photochromism of Diarylethene with Benzoxazole. Journal of Organic Chemistry, 2004, 69, 5037-5040.	3.2	56
232	Separation of new antidiabetic agent, N-(trans-4-isopropylcyclohexylcarbonyl)-d-phenylalanine and three related compounds by RP-HPLC. Chromatographia, 2003, 57, 245-247.	1.3	7
233	Experimental investigation of parallel optical data storage using pyrrylfulgide photochromic material. Science Bulletin, 2003, 48, 1548-1550.	1.7	3
234	Capillary Electrophoretic Analysis of Pharmacologically Active Xanthone Compounds from Swertia przewalskii pissjauk Extract. Journal of Liquid Chromatography and Related Technologies, 2003, 26, 1219-1229.	1.0	7

#	Article	IF	Citations
235	Synthesis and Photochromic Properties of Functional Diarylethene with a 2,5-Dihydrothiophene Bridging Unit. Organic Letters, 2003, 5, 1435-1437.	4.6	59
236	Enantioseparation of \hat{l} ±-Quaternary Amino Amides by Capillary Electrophoresis with Human Serum Albumin. Analytical Letters, 2003, 36, 1451-1462.	1.8	1
237	AN IMPROVED SYNTHESIS OF FERROCENYLVINYLPYRIDINE DERIVATIVES USING LEWIS ACIDS/SiO2SYSTEMS. Synthetic Communications, 2002, 32, 2627-2631.	2.1	4
238	Chiral separation of N-(trans-4-isopropylcyclohexylcarbonyl)-D,L-phenylalanine isomers by high performance liquid chromatography. Chromatographia, 2002, 56, 515-518.	1.3	10
239	Investigation on False Peak Phenomena in Onâ€line Sweeping Technique in MEKC. Chinese Journal of Chemistry, 2002, 20, 1579-1583.	4.9	3
240	Capillary electrophoresis of catecholamines with laser-induced fluorescence intensified charge-coupled device detection. Biomedical Chromatography, 2001, 15, 83-88.	1.7	34
241	Preparation and characterization of calixarene-coated capillaries for capillary electrophoresis. Electrophoresis, 2000, 21, 1620-1624.	2.4	33
242	"Protein-only―or "virino―in prion diseases?. Science Bulletin, 2000, 45, 285-288.	1.7	2
243	Experimental and theoretical studies on different ionic states of ethylthio CH3CH2S radical. Journal of Chemical Physics, 2000, 113, 1866-1869.	3.0	16
244	Capillary electrophoresis of FITC labeled amino acids with laser-induced fluorescence detection. Science in China Series B: Chemistry, 1999, 42, 663-669.	0.8	3
245	Theoretical examination of electroosmosis control with external radial electric field in capillary electrophoresis. Electrophoresis, 1999, 20, 1817-1821.	2.4	5
246	Capillary electrophoretic separation of glycoproteins. Science in China Series B: Chemistry, 1998, 41, 71-76.	0.8	4
247	Preparation of polyacrylamide gel-filled capillaries with step gradients and low UV-detection background. Science in China Series B: Chemistry, 1997, 40, 245-253.	0.8	0