Weicheng Jiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1323271/publications.pdf

Version: 2024-02-01

		236925	254184
52	1,892	25	43
papers	citations	h-index	g-index
F2	5 2	F2	2752
52	52	52	2752
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Spraying pressure-tuning for the fabrication of the tunable adhesion superhydrophobic coatings between Lotus effect and Petal effect and their anti-icing performance. Chemical Engineering Journal, 2022, 434, 134710.	12.7	35
2	Mechanism of matrix influencing the cryogenic mechanical property of carbon fibre reinforced epoxy resin composite. Composites Communications, 2022, 33, 101220.	6.3	16
3	Skin-inspired self-healing semiconductive touch panel based on novel transparent stretchable hydrogels. Journal of Materials Chemistry A, 2021, 9, 14806-14817.	10.3	17
4	A novel wrinkle-gradient strain sensor with anti-water interference and high sensing performance. Chemical Engineering Journal, 2021, 421, 129873.	12.7	19
5	Superhydrophobic gradient wrinkle strain sensor with ultra-high sensitivity and broad strain range for motion monitoring. Journal of Materials Chemistry A, 2021, 9, 9634-9643.	10.3	80
6	Modulus distribution in polyacrylonitrile-based carbon fiber monofilaments. Carbon, 2020, 157, 47-54.	10.3	14
7	FDTSâ€Modified SiO ₂ /rGO Wrinkled Films with a Microâ€Nanoscale Hierarchical Structure and Antiâ€king/Deicing Properties under Condensation Condition. Advanced Materials Interfaces, 2020, 7, 1901446.	3.7	39
8	High Sensitivity, Humidity-Independent, Flexible NO ₂ and NH ₃ Gas Sensors Based on SnS ₂ Hybrid Functional Graphene Ink. ACS Applied Materials & Samp; Interfaces, 2020, 12, 997-1004.	8.0	69
9	Enhancement of the cryogenicâ€interfacialâ€strength of carbon fiber composites by chemical grafting of graphene oxide/attapulgite on <scp>T300</scp> . Polymer Composites, 2020, 41, 5072-5081.	4.6	17
10	SnS ₂ Quantum Dot-Based Optoelectronic Flexible Sensors for Ultrasensitive Detection of NO ₂ Down to 1 ppb. ACS Applied Materials & amp; Interfaces, 2020, 12, 25178-25188.	8.0	51
11	Smart Superhydrophobic Films with Selfâ€Sensing and Antiâ€Icing Properties Based on Silica Nanoparticles and Graphene. Advanced Materials Interfaces, 2020, 7, 2000492.	3.7	20
12	Directional rebound control of droplets on low-temperature regular and irregular wrinkled superhydrophobic surfaces. Applied Surface Science, 2020, 530, 147099.	6.1	14
13	Interface properties of carbon fiber reinforced cyanate/epoxy resin composites at cryogenic temperature. Journal of Polymer Engineering, 2020, 40, 291-299.	1.4	2
14	Superhydrophobic heterogeneous graphene networks with controllable adhesion behavior for detecting multiple underwater motions. Journal of Materials Chemistry A, 2019, 7, 17766-17774.	10.3	28
15	Simulation and measurement of cryogenic-interfacial-properties of T700/modified epoxy for composite cryotanks. Materials and Design, 2019, 182, 108050.	7.0	35
16	High strength and toughness epoxy nanocomposites reinforced with graphene oxide-nanocellulose micro/nanoscale structures. Applied Surface Science, 2019, 497, 143802.	6.1	11
17	Ultrasensitive room temperature ppb-level NO ₂ gas sensors based on SnS ₂ /rGO nanohybrids with P–N transition and optoelectronic visible light enhancement performance. Journal of Materials Chemistry C, 2019, 7, 8616-8625.	5.5	85
18	An underwater, self-sensing, conductive composite coating with controllable wettability and adhesion behavior. Journal of Materials Chemistry A, 2019, 7, 12333-12342.	10.3	15

#	Article	IF	Citations
19	Molecular dynamics simulations of the effect of sizing agent on the interface property in carbon fiber reinforced vinyl ester resin composite. Applied Surface Science, 2019, 479, 1192-1199.	6.1	38
20	Ultrafast, Reversible Transition of Superwettability of Graphene Network and Controllable Underwater Oil Adhesion for Oil Microdroplet Transportation. Advanced Functional Materials, 2018, 28, 1706686.	14.9	44
21	Preparation of carbon fiber unsaturated sizing agent for enhancing interfacial strength of carbon fiber/vinyl ester resin composite. Applied Surface Science, 2018, 439, 88-95.	6.1	49
22	Study on rheological behavior of vinyl ester resin during thickening. Journal of Vinyl and Additive Technology, 2018, 24, 239-247.	3.4	4
23	Improving the interfacial strength of carbon fiber/vinyl ester resin composite by self-migration of acrylamide: A molecular dynamics simulation. Applied Surface Science, 2018, 454, 74-81.	6.1	22
24	Improving the mechanical properties of Fe ₃ O ₄ /carbon nanotube reinforced nanocomposites by a low-magnetic-field induced alignment. Journal of Polymer Engineering, 2018, 38, 731-738.	1.4	8
25	A self-sensing, superhydrophobic, heterogeneous graphene network with controllable adhesion behavior. Journal of Materials Chemistry A, 2018, 6, 16992-17000.	10.3	32
26	Calibrating conservative and dissipative response of electrically-driven quartz tuning forks. Ultramicroscopy, 2017, 174, 106-111.	1.9	1
27	Scalable exfoliation for large-size boron nitride nanosheets by low temperature thermal expansion-assisted ultrasonic exfoliation. Journal of Materials Chemistry C, 2017, 5, 6359-6368.	5.5	76
28	Study of structureâ€"mechanical heterogeneity of polyacrylonitrile-based carbon fiber monofilament by plasma etching-assisted radius profiling. Carbon, 2017, 114, 317-323.	10.3	22
29	Enhanced and tunable photochromism of MoO ₃ –butylamine organic–inorganic hybrid composites. Journal of Materials Chemistry C, 2017, 5, 427-433.	5.5	39
30	Improving the interfacial property of carbon fiber/vinyl ester resin composite by grafting modification of sizing agent on carbon fiber surface. Journal of Materials Science, 2017, 52, 13812-13828.	3.7	23
31	Surface modification and magnetic alignment of hexagonal boron nitride nanosheets for highly thermally conductive composites. RSC Advances, 2017, 7, 43380-43389.	3.6	48
32	A biomimetic, multifunctional, superhydrophobic graphene film with self-sensing and fast recovery properties for microdroplet transportation. Journal of Materials Chemistry A, 2017, 5, 17325-17334.	10.3	40
33	Study on Damage Evaluation and Machinability of UD-CFRP for the Orthogonal Cutting Operation Using Scanning Acoustic Microscopy and the Finite Element Method. Materials, 2017, 10, 204.	2.9	23
34	Biomimic Hairy Skin Tactile Sensor Based on Ferromagnetic Microwires. ACS Applied Materials & Interfaces, 2016, 8, 33848-33855.	8.0	33
35	Preparation of quantum dots from MoO ₃ nanosheets by UV irradiation and insight into morphology changes. Journal of Materials Chemistry C, 2016, 4, 11449-11456.	5.5	22
36	Oxidative etching of MoS ₂ /WS ₂ nanosheets to their QDs by facile UV irradiation. Physical Chemistry Chemical Physics, 2016, 18, 31211-31216.	2.8	14

#	Article	IF	CITATIONS
37	Preparation of MoO ₃ QDs through combining intercalation and thermal exfoliation. Journal of Materials Chemistry C, 2016, 4, 6720-6726.	5 . 5	37
38	Note: Wide band amplifier for quartz tuning fork sensors with digitally controlled stray capacitance compensation. Review of Scientific Instruments, 2015, 86, 116105.	1.3	3
39	Study on phenolphthalein poly(ether sulfone)-modified cyanate ester resin and epoxy resin blends. Polymer Engineering and Science, 2015, 55, 2591-2602.	3.1	18
40	Interfacial healing of carbon fiber composites in the presence of gold nanoparticles as localized "nano-heaters― RSC Advances, 2015, 5, 5680-5685.	3.6	6
41	Photothermal healing of a glass fiber reinforced composite interface by gold nanoparticles. RSC Advances, 2015, 5, 102167-102172.	3.6	9
42	MoS2 graphene fiber based gas sensing devices. Carbon, 2015, 95, 34-41.	10.3	124
43	Study of the Microstructure and Mechanical Properties of Pbsn Alloys Deposited on Carbon Fiber Reinforced Epoxy Composites. Polymers and Polymer Composites, 2014, 22, 215-220.	1.9	1
44	Prediction of Delamination Buckling and Growth Behavior in Laminated Composites with Coexisting Delaminations. Polymers and Polymer Composites, 2014, 22, 299-308.	1.9	0
45	Effect of Fiber Surface on the Interfacial Properties for Carbon Fiber Reinforced Polymer Composites. Polymers and Polymer Composites, 2014, 22, 283-288.	1.9	1
46	Tensile Properties of Epoxy with Microcapsules and Imidazoline Derivatives Curing Agent and Interlaminar Self-Healing Properties of Carbon Fiber Reinforced Epoxy Composites. Polymers and Polymer Composites, 2014, 22, 293-298.	1.9	5
47	Improvement in interfacial shear strength and fracture toughness for carbon fiber reinforced epoxy composite by fiber sizing. Polymer Composites, 2014, 35, 482-488.	4.6	37
48	Improving the gas barrier properties of Fe3O4/graphite nanoplatelet reinforced nanocomposites by a low magnetic field induced alignment. Composites Science and Technology, 2014, 99, 124-130.	7.8	71
49	Attapulgite–graphene oxide hybrids as thermal and mechanical reinforcements for epoxy composites. Composites Science and Technology, 2013, 87, 29-35.	7.8	63
50	Control of the functionality of graphene oxide for its application inÂepoxy nanocomposites. Polymer, 2013, 54, 6437-6446.	3.8	252
51	Effects of modified attapulgite on the properties of attapulgite/epoxy nanocomposites. Polymer Composites, 2013, 34, 22-31.	4.6	40
52	Synthesis and characterization of a new hierarchical reinforcement by chemically grafting graphene oxide onto carbon fibers. Journal of Materials Chemistry, 2012, 22, 18748.	6.7	120