Andrew Steven Whiteley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1322740/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid Method for Coextraction of DNA and RNA from Natural Environments for Analysis of Ribosomal DNA- and rRNA-Based Microbial Community Composition. Applied and Environmental Microbiology, 2000, 66, 5488-5491.	3.1	1,422
2	The bacterial biogeography of British soils. Environmental Microbiology, 2011, 13, 1642-1654.	3.8	753
3	Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nature Biotechnology, 2011, 29, 415-420.	17.5	608
4	Aerobic proteobacterial methylotrophs in Movile Cave: genomic and metagenomic analyses. Microbiome, 2018, 6, 1.	11.1	541
5	RNA Stable Isotope Probing, a Novel Means of Linking Microbial Community Function to Phylogeny. Applied and Environmental Microbiology, 2002, 68, 5367-5373.	3.1	527
6	Unravelling rhizosphere–microbial interactions: opportunities and limitations. Trends in Microbiology, 2004, 12, 386-393.	7.7	426
7	Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10938-10942.	7.1	390
8	Raman Microscopic Analysis of Single Microbial Cells. Analytical Chemistry, 2004, 76, 4452-4458.	6.5	371
9	Advances in restoration ecology: rising to the challenges of the coming decades. Ecosphere, 2015, 6, 1-25.	2.2	361
10	Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environmental Microbiology, 2007, 9, 1878-1889.	3.8	305
11	Microbial 16S rRNA Ion Tag and community metagenome sequencing using the Ion Torrent (PGM) Platform. Journal of Microbiological Methods, 2012, 91, 80-88.	1.6	187
12	Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nature Microbiology, 2019, 4, 1727-1736.	13.3	184
13	Bacterial Community Structure and Physiological State within an Industrial Phenol Bioremediation System. Applied and Environmental Microbiology, 2000, 66, 2400-2407.	3.1	178
14	Influence of depth and sampling time on bacterial community structure in an upland grassland soil. FEMS Microbiology Ecology, 2003, 43, 35-43.	2.7	170
15	Physiological and Community Responses of EstablishedGrassland Bacterial Populations to WaterStress. Applied and Environmental Microbiology, 2003, 69, 6961-6968.	3.1	167
16	N-acyl-l-homoserine lactones (AHLs) affect microbial community composition and function in activated sludge. Environmental Microbiology, 2004, 6, 424-433.	3.8	154
17	Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance. Science of the Total Environment, 2022, 805, 149877.	8.0	153
18	Resolving Genetic Functions within Microbial Populations: In Situ Analyses Using rRNA and mRNA Stable Isotope Probing Coupled with Single-Cell Raman-Fluorescence In Situ Hybridization. Applied and Environmental Microbiology, 2009, 75, 234-241.	3.1	128

#	Article	IF	CITATIONS
19	Technical considerations for RNA-based stable isotope probing: an approach to associating microbial diversity with microbial community function. Rapid Communications in Mass Spectrometry, 2002, 16, 2179-2183.	1.5	125
20	The response of marine picoplankton to ocean acidification. Environmental Microbiology, 2012, 14, 2293-2307.	3.8	124
21	Quantitativein situassay of salicylic acid in tobacco leaves using a genetically modified biosensor strain ofAcinetobactersp. ADP1. Plant Journal, 2006, 46, 1073-1083.	5.7	115
22	Raman tweezers sorting of single microbial cells. Environmental Microbiology Reports, 2009, 1, 44-49.	2.4	115
23	Active microbial RNA turnover in a grassland soil estimated using a 13CO2 spike. Soil Biology and Biochemistry, 2003, 35, 877-885.	8.8	113
24	RNA stable-isotope probing. Nature Protocols, 2007, 2, 838-844.	12.0	109
25	Vegetation Affects the Relative Abundances of Dominant Soil Bacterial Taxa and Soil Respiration Rates in an Upland Grassland Soil. Microbial Ecology, 2010, 59, 335-343.	2.8	107
26	Chromosomally located gene fusions constructed in Acinetobacter sp. ADP1 for the detection of salicylate. Environmental Microbiology, 2005, 7, 1339-1348.	3.8	99
27	Unlocking the â€~microbial black box' using RNA-based stable isotope probing technologies. Current Opinion in Biotechnology, 2006, 17, 67-71.	6.6	93
28	Taxon-specific responses of soil bacteria to the addition of low level C inputs. Soil Biology and Biochemistry, 2010, 42, 1624-1631.	8.8	90
29	Plant community composition affects the biomass, activity and diversity of microorganisms in limestone grassland soil. European Journal of Soil Science, 2003, 54, 671-678.	3.9	88
30	Bacterial community structure and function in a metal-working fluid. Environmental Microbiology, 2003, 5, 453-461.	3.8	83
31	Whole cell immobilised biosensors for toxicity assessment of a wastewater treatment plant treating phenolics-containing waste. Analytica Chimica Acta, 2003, 487, 61-74.	5.4	80
32	Soil Carbon-Fixation Rates and Associated Bacterial Diversity and Abundance in Three Natural Ecology, 2017, 73, 645-657.	2.8	80
33	Functional and compositional comparison of two activated sludge communities remediating coking effluent. Environmental Microbiology, 2005, 7, 715-722.	3.8	73
34	13CO2 pulse labelling of plants in tandem with stable isotope probing: methodological considerations for examining microbial function in the rhizosphere. Journal of Microbiological Methods, 2004, 58, 119-129.	1.6	70
35	Temporal dynamics and degradation activity of an bacterial inoculum for treating waste metal-working fluid. Environmental Microbiology, 2004, 6, 254-263.	3.8	67
36	Comparison of Bacterioneuston and Bacterioplankton Dynamics during a Phytoplankton Bloom in a Fjord Mesocosm. Applied and Environmental Microbiology, 2009, 75, 7173-7181.	3.1	63

ANDREW STEVEN WHITELEY

#	Article	IF	CITATIONS
37	Microbial Functional Capacity Is Preserved Within Engineered Soil Formulations Used In Mine Site Restoration. Scientific Reports, 2017, 7, 564.	3.3	61
38	Protists have divergent effects on bacterial diversity along a productivity gradient. Biology Letters, 2010, 6, 639-642.	2.3	60
39	Effects of sieving, drying and rewetting upon soil bacterial community structure and respiration rates. Journal of Microbiological Methods, 2010, 83, 69-73.	1.6	58
40	Dissolved organic carbon and bacterial populations in the gelatinous surface microlayer of a Norwegian fjord mesocosm. FEMS Microbiology Letters, 2009, 299, 248-254.	1.8	54
41	The characterisation of eukaryotic microbial communities onÂsandstone buildings in Belfast, UK, using TRFLP and 454 pyrosequencing. International Biodeterioration and Biodegradation, 2013, 82, 124-133.	3.9	51
42	Marine bacterial communities are resistant to elevated carbon dioxide levels. Environmental Microbiology Reports, 2014, 6, 574-582.	2.4	47
43	Cropping systems modulate the rate and magnitude of soil microbial autotrophic CO2 fixation in soil. Frontiers in Microbiology, 2015, 6, 379.	3.5	47
44	Bacterial Physiological Adaptations to Contrasting Edaphic Conditions Identified Using Landscape Scale Metagenomics. MBio, 2017, 8, .	4.1	46
45	Analysis of the microbial functional diversity within water-stressed soil communities by flow cytometric analysis and CTC+ cell sorting. Journal of Microbiological Methods, 2003, 54, 257-267.	1.6	45
46	The sensitivity of a forest soil microbial community to acute gamma-irradiation. Applied Soil Ecology, 2007, 37, 1-9.	4.3	43
47	Weekly flow cytometric analysis of riverine phytoplankton to determine seasonal bloom dynamics. Environmental Sciences: Processes and Impacts, 2014, 16, 594.	3.5	42
48	The Bacterial Microbiome Associated With Arid Biocrusts and the Biogeochemical Influence of Biocrusts Upon the Underlying Soil. Frontiers in Microbiology, 2019, 10, 2143.	3.5	42
49	Single-Cell Raman Spectral Profiles of Pseudomonas fluorescens SBW25 Reflects in vitro and in planta Metabolic History. Microbial Ecology, 2007, 53, 414-425.	2.8	41
50	Ecological and physiological analyses of Pseudomonad species within a phenol remediation system. Journal of Microbiological Methods, 2001, 44, 79-88.	1.6	40
51	Salivary nitrate ? an ecological factor in reducing oral acidity. Oral Microbiology and Immunology, 2007, 22, 67-71.	2.8	40
52	Grassland management influences spatial patterns of soil microbial communities. Soil Biology and Biochemistry, 2013, 61, 61-68.	8.8	39
53	Plant soil interactions alter carbon cycling in an upland grassland soil. Frontiers in Microbiology, 2013, 4, 253.	3.5	39
54	What can stable isotope probing do for bioremediation?. International Biodeterioration and Biodegradation, 2004, 54, 163-166.	3.9	38

#	Article	IF	CITATIONS
55	Hydrocarbon utilization within a diesel-degrading bacterial consortium. FEMS Microbiology Letters, 2010, 303, 116-122.	1.8	38
56	Humus-Rich Compost Increases Lettuce Growth, Nutrient Uptake, Mycorrhizal Colonisation, and Soil Fertility. Pedosphere, 2019, 29, 170-179.	4.0	38
57	Bioaugmentation Strategies for Remediating Mixed Chemical Effluents. Biotechnology Progress, 2008, 19, 1156-1161.	2.6	33
58	Response of Wheat to a Multiple Species Microbial Inoculant Compared to Fertilizer Application. Frontiers in Plant Science, 2018, 9, 1601.	3.6	33
59	Reconditioning Degraded Mine Site Soils With Exogenous Soil Microbes: Plant Fitness and Soil Microbiome Outcomes. Frontiers in Microbiology, 2019, 10, 1617.	3.5	33
60	Land coverage influences the bacterial community composition in the critical zone of a sub-Arctic basaltic environment. FEMS Microbiology Ecology, 2013, 86, 381-393.	2.7	30
61	Acylated homoserine lactones in the environment: chameleons of bioactivity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 1235-1240.	4.0	28
62	Insights into the fate of a 13C labelled phenol pulse for stable isotope probing (SIP) experiments. Journal of Microbiological Methods, 2007, 69, 340-344.	1.6	27
63	Characterizing the regulation of the <i>Pu</i> promoter in <i>Acinetobacter baylyi</i> ADP1. Environmental Microbiology, 2008, 10, 1668-1680.	3.8	27
64	Fourier transform infrared spectroscopy as a metabolite fingerprinting tool for monitoring the phenotypic changes in complex bacterial communities capable of degrading phenol. Environmental Microbiology, 2010, 12, 3253-3263.	3.8	27
65	Chemical fixation methods for Raman spectroscopy-based analysis of bacteria. Journal of Microbiological Methods, 2015, 109, 79-83.	1.6	27
66	An improved method of cell cycle synchronisation for the heterotrophic dinoflagellate Crypthecodinium cohnii Biecheler analyzed by flow cytometry. Journal of Experimental Marine Biology and Ecology, 1996, 197, 91-99.	1.5	26
67	Development of bespoke bioluminescent reporters with the potential for in situ deployment within a phenolic-remediating wastewater treatment system. Journal of Microbiological Methods, 2003, 55, 667-677.	1.6	26
68	Abundance and Diversity of CO2-Assimilating Bacteria and Algae Within Red Agricultural Soils Are Modulated by Changing Management Practice. Microbial Ecology, 2015, 70, 971-980.	2.8	25
69	Evidence for Phenotypic Plasticity among Multihost Campylobacter jejuni and C. coli Lineages, Obtained Using Ribosomal Multilocus Sequence Typing and Raman Spectroscopy. Applied and Environmental Microbiology, 2013, 79, 965-973.	3.1	24
70	Microbial analysis of soil and groundwater from a gasworks site and comparison with a sequenced biological reactive barrier remediation process. Journal of Applied Microbiology, 2007, 102, 1227-1238.	3.1	23
71	Transcriptional activities of methanogens and methanotrophs vary with methane emission flux in rice soils under chronic nutrient constraints of phosphorus and potassium. Biogeosciences, 2016, 13, 6507-6518.	3.3	21
72	Examining assumptions of soil microbial ecology in the monitoring of ecological restoration. Ecological Solutions and Evidence, 2020, 1, e12031.	2.0	20

#	Article	lF	CITATIONS
73	The functions and components of the Sourhope soil microbiota. Applied Soil Ecology, 2006, 33, 114-126.	4.3	19
74	Abundance of microbial CO ₂ -fixing genes during the late rice season in a long-term management paddy field amended with straw and straw-derived biochar. Canadian Journal of Soil Science, 2018, 98, 306-316.	1.2	19
75	SYTO16 labelling and flow cytometry of Mycobacterium avium. Letters in Applied Microbiology, 1997, 25, 437-441.	2.2	17
76	Microbial phylogenetic and functional responses within acidified wastewater communities exhibiting enhanced phosphate uptake. Bioresource Technology, 2016, 220, 55-61.	9.6	17
77	Polymer-coated rock mineral fertilizer has potential to substitute soluble fertilizer for increasing growth, nutrient uptake, and yield of wheat. Biology and Fertility of Soils, 2020, 56, 381-394.	4.3	17
78	Effect of phosphorus amendments on rice rhizospheric methanogens and methanotrophs in a phosphorus deficient soil. Geoderma, 2020, 368, 114312.	5.1	17
79	Functional analysis of pristine estuarine marine sediments. Science of the Total Environment, 2021, 781, 146526.	8.0	16
80	Metaproteomic and metagenomic analyses of defined oceanic microbial populations using microwave cell fixation and flow cytometric sorting. FEMS Microbiology Ecology, 2010, 74, 10-18.	2.7	15
81	Microbial inoculation to improve plant performance in mineâ€waste substrates: A test using pigeon pea (<i>Cajanus cajan</i>). Land Degradation and Development, 2022, 33, 497-511.	3.9	15
82	Density gradient separation of active and non-active cells from natural environments. Antonie Van Leeuwenhoek, 2000, 77, 173-177.	1.7	12
83	Influence of Sustainability and Immigration in Assembling Bacterial Populations of Known Size and Function. Microbial Ecology, 2007, 53, 348-354.	2.8	12
84	Non-destructive sampling of rock-dwelling microbial communities using sterile adhesive tape. Journal of Microbiological Methods, 2012, 91, 391-398.	1.6	12
85	Field scale molecular analysis for the monitoring of bacterial community structures during on-site diesel bioremediation. Bioresource Technology, 2010, 101, 5235-5241.	9.6	11
86	Abundance and diversity of carbon monoxide dehydrogenase genes from BMS clade bacteria in different vegetated soils. European Journal of Soil Biology, 2017, 81, 94-99.	3.2	10
87	Stable Isotope Probing: A Critique of Its Role in Linking Phylogeny and Function. , 2006, , 205-216.		8
88	Monitoring Bioremediation. , 0, , 237-268.		8
89	Novel Primer Sets for Next Generation Sequencing-Based Analyses of Water Quality. PLoS ONE, 2017, 12, e0170008.	2.5	8
90	Small investments with big returns: environmental genomic bioprospecting of microbial life. Critical Reviews in Microbiology, 2022, 48, 641-655.	6.1	7

1

#	Article	IF	CITATIONS
91	Genomic Structure of the Luciferase Gene from the Bioluminescent Beetle, <i>Nyctophila</i> cf. <i>Caucasica</i> . Journal of Insect Science, 2006, 6, 1-8.	1.5	5
92	Phospholipid Fatty Acid Stable Isotope Probing Techniques in Microbial Ecology. , 0, , 37-71.		5
93	Wastewater Toxicity Assessment by Whole Cell Biosensor. Handbook of Environmental Chemistry, 2004, , 165-225.	0.4	4
94	Nano-Secondary lons Mass Spectrometry (nanoSIMS) Coupled with In Situ Hybridization for Ecological Research. , 2014, , 295-303.		4
95	Draft Genome Sequence of the Methane-Oxidizing Bacterium " <i>Candidatus</i> Methylomonas sp. LWB―Isolated from Movile Cave. Genome Announcements, 2017, 5, .	0.8	4
96	Developing Bioprospecting Strategies for Bioplastics Through the Large-Scale Mining of Microbial Genomes. Frontiers in Microbiology, 2021, 12, 697309.	3.5	4
97	DNA Stable Isotope Probing. , 0, , 1-24.		4
98	From rags to enriched: metagenomic insights into ammoniaâ€oxidizing archaea following ammonia enrichment of a denuded oligotrophic soil ecosystem. Environmental Microbiology, 2022, 24, 3097-3110.	3.8	4
99	Mesophilic Mineral-Weathering Bacteria Inhabit the Critical-Zone of a Perennially Cold Basaltic Environment. Geomicrobiology Journal, 2016, 33, 52-62.	2.0	3
100	RNA Stable Isotope Probing (RNA-SIP). Methods in Molecular Biology, 2019, 2046, 31-44.	0.9	3
101	Temporal Microbial Community Dynamics Within a Unique Acid Saline Lake. Frontiers in Microbiology, 2021, 12, 649594.	3.5	3
102	RNA Stable Isotope Probing. , 0, , 25-36.		3
103	Calibration and deployment of custom-designed bioreporters for protecting biological remediation consortia from toxic shock. Environmental Microbiology, 2005, 7, 260-269.	3.8	2
104	Fish-Microautoradiography and Isotope Arrays for Monitoring the Ecophysiology of Microbes Within Their Natural Environment. , 2014, , 305-316.		2
105	Stable Isotope Probing Techniques Using H2 18O. , 0, , 115-128.		2
106	Stable Isotope Probing and Plants. , 0, , 149-163.		2
107	Stable Isotope Probing Techniques Using ¹⁵ N. , 0, , 129-147.		1

108 Raman-Fluorescence in Situ Hybridization. , 0, , 277-294.

7

#	Article	IF	CITATIONS
109	RNA-Radioisotope Probing for Studying Carbon Metabolism in Soils. , 0, , 317-332.		1
110	Stable Isotope Probing Techniques and Bioremediation. , 0, , 165-201.		1
111	Stable Isotope Probing and the Human Gut. , 0, , 233-257.		1
112	DNA stable Isotope Probing and Gene Mining. , 0, , 259-276.		0
113	Single Cell Microbial Ecophysiology with Raman-FISH. Springer Protocols, 2015, , 65-76.	0.3	0
114	Protein Stable Isotope Probing. , 0, , 73-95.		0
115	Trophic Interactions in Microbial Communities and Food Webs Traced by Stable Isotope Probing of Nucleic Acids. , 0, , 203-232.		0
116	A Glance Toward the Future: Where Do We Go from Here?. , 0, , 333-336.		0
117	Stable Isotope Probing and Metagenomics. , 0, , 97-114.		0
118	Establishing a regional microbial blueprint of metabolic function in sediment collected from pristine tropical estuarine systems. , 2022, , 337-357.		0