Maria Belen Pico

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1322657/publications.pdf

Version: 2024-02-01

		94433	102487
133	5,060	37	66
papers	citations	h-index	g-index
139	139	139	3827
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A cryptic variation in a member of the Ovate Family Proteins is underlying the melon fruit shape QTL fsqs8.1. Theoretical and Applied Genetics, 2022, 135, 785-801.	3.6	12
2	Carotenoid fortification of zucchini fruits using a viral RNA vector. Biotechnology Journal, 2022, 17, e2100328.	3.5	8
3	Spanish Melon Landraces: Revealing Useful Diversity by Genomic, Morphological, and Metabolomic Analysis. International Journal of Molecular Sciences, 2022, 23, 7162.	4.1	2
4	Transcriptomic analysis of a nearâ€isogenic line of melon with high fruit flesh firmness during ripening. Journal of the Science of Food and Agriculture, 2021, 101, 754-777.	3.5	9
5	Analysis of aroma-related volatile compounds affected by †Ginsen Makuwa†Mgenomic regions introgressed in †Vedrantais†melon background. Scientia Horticulturae, 2021, 276, 109664.	3.6	5
6	Grafting Snake Melon [Cucumis melo L. subsp. melo Var. flexuosus (L.) Naudin] in Organic Farming: Effects on Agronomic Performance; Resistance to Pathogens; Sugar, Acid, and VOC Profiles; and Consumer Acceptance. Frontiers in Plant Science, 2021, 12, 613845.	3.6	13
7	Resistant Sources and Genetic Control of Resistance to ToLCNDV in Cucumber. Microorganisms, 2021, 9, 913.	3.6	16
8	Resistance to Cucumber Green Mottle Mosaic Virus in Cucumis melo. Plants, 2021, 10, 1077.	3.5	4
9	A comprehensive RNA-Seq-based gene expression atlas of the summer squash (Cucurbita pepo) provides insights into fruit morphology and ripening mechanisms. BMC Genomics, 2021, 22, 341.	2.8	12
10	Resistance to Three Distinct Begomovirus Species in the Agronomical Superior Tropical Pumpkin Line AVPU1426 Developed at the World Vegetable Center. Agronomy, 2021, 11, 1256.	3.0	6
11	Large-scale gene gains and losses molded the NLR defense arsenal during the Cucurbita evolution. Planta, 2021, 254, 82.	3.2	6
12	Natural Resistances to Viruses in Cucurbits. Agronomy, 2021, 11, 23.	3.0	26
13	RNA-Seq Transcriptome Analysis Provides Candidate Genes for Resistance to Tomato Leaf Curl New Delhi Virus in Melon. Frontiers in Plant Science, 2021, 12, 798858.	3.6	14
14	First Report of <i>Neocosmospora falciformis</i> Causing Wilt and Root Rot of Muskmelon in Spain. Plant Disease, 2020, 104, 1256.	1.4	12
15	Effect of temperature on disease severity of charcoal rot of melons caused by Macrophomina phaseolina: implications for selection of resistance sources. European Journal of Plant Pathology, 2020, 158, 431-441.	1.7	15
16	Mapping a Partial Andromonoecy Locus in Citrullus lanatus Using BSA-Seq and GWAS Approaches. Frontiers in Plant Science, 2020, 11, 1243.	3.6	15
17	Evidence of the Role of QTL Epistatic Interactions in the Increase of Melon Fruit Flesh Content during Domestication. Agronomy, 2020, 10, 1064.	3.0	3
18	Melon Genome Regions Associated with TGR-1551-Derived Resistance to Cucurbit yellow stunting disorder virus. International Journal of Molecular Sciences, 2020, 21, 5970.	4.1	5

#	Article	IF	Citations
19	Synthetic conversion of leaf chloroplasts into carotenoid-rich plastids reveals mechanistic basis of natural chromoplast development. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21796-21803.	7.1	77
20	Melon Genetic Resources Characterization for Rind Volatile Profile. Agronomy, 2020, 10, 1512.	3.0	11
21	Resistance in melon to <i>Monosporascus cannonballus</i> and <i>M. eutypoides</i> : Fungal pathogens associated with Monosporascus root rot and vine decline. Annals of Applied Biology, 2020, 177, 101-111.	2.5	11
22	Neocosmospora keratoplastica, a relevant human fusarial pathogen is found to be associated with wilt and root rot of Muskmelon and Watermelon crops in Spain: epidemiological and molecular evidences. European Journal of Plant Pathology, 2020, 156, 1189-1196.	1.7	7
23	A Major QTL Located in Chromosome 8 of Cucurbita moschata Is Responsible for Resistance to Tomato Leaf Curl New Delhi Virus. Frontiers in Plant Science, 2020, 11, 207.	3.6	30
24	Interspecific hybrids of wild Cucumis species ( Fian' and  Fimy'): new rootstocks for melon highly resistant to biotic soil stress. Acta Horticulturae, 2020, , 169-172.	0.2	1
25	First Report of Cucurbit Chlorotic Yellows Virus Infecting Cucumber and Zucchini in Algeria. Plant Disease, 2020, 104, 1264-1264.	1.4	6
26	Candidate gene analysis of Tomato leaf curl New Delhi virus resistance in Cucumis melo. Scientia Horticulturae, 2019, 243, 12-20.	3.6	11
27	Whole-genome resequencing of Cucurbita pepo morphotypes to discover genomic variants associated with morphology and horticulturally valuable traits. Horticulture Research, 2019, 6, 94.	6.3	34
28	New melon introgression lines in a Piel de Sapo genetic background with desirable agronomical traits from dudaim melons. Euphytica, 2019, 215, 1 .	1.2	7
29	CmVPS41 Is a General Gatekeeper for Resistance to Cucumber Mosaic Virus Phloem Entry in Melon. Frontiers in Plant Science, 2019, 10, 1219.	3.6	16
30	Fine mapping of wmv 1551 , a resistance gene to Watermelon mosaic virus in melon. Molecular Breeding, 2019, 39, 1.	2.1	6
31	Re-evaluation of the role of Indian germplasm as center of melon diversification based on genotyping-by-sequencing analysis. BMC Genomics, 2019, 20, 448.	2.8	35
32	First RNA-seq approach to study fruit set and parthenocarpy in zucchini (Cucurbita pepo L.). BMC Plant Biology, 2019, 19, 61.	3.6	19
33	Response of two Citrullus amarus accessions to isolates of three species of Meloidogyne and their graft compatibility with watermelon. Crop Protection, 2019, 119, 208-213.	2.1	16
34	A Watermelon mosaic virus clone tagged with the yellow visual maker phytoene synthase facilitates scoring infectivity in melon breeding programs. European Journal of Plant Pathology, 2019, 153, 1317-1323.	1.7	8
35	Molecular and morphological characterisation of the oldest Cucumis melo L. seeds found in the Western Mediterranean Basin. Archaeological and Anthropological Sciences, 2019, 11, 789-810.	1.8	17
36	First Report of Tomato Leaf Curl New Delhi Virus Infecting Cucurbit Plants in Algeria. Plant Disease, 2019, 103, 3291-3291.	1.4	26

#	Article	IF	CITATIONS
37	Fruit flesh volatile and carotenoid profile analysis within the <i>Cucumis melo</i> L. species reveals unexploited variability for future genetic breeding. Journal of the Science of Food and Agriculture, 2018, 98, 3915-3925.	3.5	50
38	First Report of <i>Tomato leaf curl New Delhi virus </i> Infecting Zucchini in Morocco. Plant Disease, 2018, 102, 1045-1045.	1.4	33
39	<i>Cucumis metuliferus</i> is resistant to rootâ€knot nematode <i>Mi1.2</i> gene (a)virulent isolates and a promising melon rootstock. Plant Pathology, 2018, 67, 1161-1167.	2.4	23
40	<i>De novo</i> assembly of the zucchini genome reveals a wholeâ€genome duplication associated with the origin of the <i>Cucurbita</i> genus. Plant Biotechnology Journal, 2018, 16, 1161-1171.	8.3	160
41	Repeated domestication of melon ($\langle i \rangle$ Cucumis melo $\langle i \rangle$) in Africa and Asia and a new close relative from India. American Journal of Botany, 2018, 105, 1662-1671.	1.7	59
42	â€~Carmen', a Yellow Canary Melon Breeding Line Resistant to Podosphaera xanthii, Aphis gossypii, and Cucurbit Yellow Stunting Disorder Virus. Hortscience: A Publication of the American Society for Hortcultural Science, 2018, 53, 1072-1075.	1.0	9
43	An SNP-based saturated genetic map and QTL analysis of fruit-related traits in Zucchini using Genotyping-by-sequencing. BMC Genomics, 2017, 18, 94.	2.8	93
44	Inheritance of resistance to <i>Podosphaera xanthii</i> in melon accessions AM-55 and AC-15. Acta Horticulturae, 2017, , 63-68.	0.2	1
45	Morphological and molecular characterization of new melon germplasm resistant to <i>Podosphaera xanthii</i> . Acta Horticulturae, 2017, , 69-74.	0.2	1
46	New tools for breeding cantaloupe melons: first introgression line collection of makuwa melons into Charentais genetic background. Acta Horticulturae, 2017, , 75-80.	0.2	0
47	A new introgression line collection to improve †Piel de Sapo' melons. Acta Horticulturae, 2017, , 81-86.	0.2	2
48	Evaluation of two potential <i>Cucumis </i> spp. resources for grafting melons. Acta Horticulturae, 2017, , 157-162.	0.2	2
49	Evaluation ofCucurbita moschata×Cucurbita maximarootstocks against ToLCNDV. Acta Horticulturae, 2017, , 217-222.	0.2	0
50	Tolerance to ToLCNDV in <i>Cucurbita</i> spp Acta Horticulturae, 2017, , 31-36.	0.2	0
51	<i><scp>ETHQV</scp>6.3</i> is involved in melon climacteric fruit ripening and is encoded by a <scp>NAC</scp> domain transcription factor. Plant Journal, 2017, 91, 671-683.	5.7	71
52	New Cucumis Rootstocks for Melon: â€~UPV-FA' and â€~UPV-FMy'. Hortscience: A Publication of the American Society for Hortcultural Science, 2017, 52, 792-797.	1.0	12
53	Quantitative trait loci analysis of melon (Cucumis melo L.) domestication-related traits. Theoretical and Applied Genetics, 2017, 130, 1837-1856.	3.6	37
54	A mutation in the melon Vacuolar Protein Sorting 41 prevents systemic infection of Cucumber mosaic virus. Scientific Reports, 2017, 7, 10471.	3.3	51

#	Article	IF	CITATIONS
55	Resistance to tomato leaf curl New Delhi virus in melon is controlled by a major QTL located in chromosome 11. Plant Cell Reports, 2017, 36, 1571-1584.	5.6	50
56	Inheritance analysis and identification of SNP markers associated with ZYMV resistance in Cucurbita pepo. Molecular Breeding, 2017, 37, 1.	2.1	39
57	Brazilian melon landraces resistant to <i>Podosphaera xanthii</i> are unique germplasm resources. Annals of Applied Biology, 2017, 171, 214-228.	2.5	5
58	Fruit quality assessment of watermelons grafted onto citron melon rootstock. Journal of the Science of Food and Agriculture, 2017, 97, 1646-1655.	3.5	41
59	Agromorphological genetic diversity of Spanish traditional melons. Genetic Resources and Crop Evolution, 2017, 64, 1687-1706.	1.6	3
60	â€~MAK-10': A Long Shelf-life Charentais Breeding Line Developed by Introgression of a Genomic Region from Makuwa Melon. Hortscience: A Publication of the American Society for Hortcultural Science, 2017, 52, 1633-1638.	1.0	11
61	QTL Analyses in Multiple Populations Employed for the Fine Mapping and Identification of Candidate Genes at a Locus Affecting Sugar Accumulation in Melon (Cucumis melo L.). Frontiers in Plant Science, 2017, 8, 1679.	3.6	32
62	Evaluación de la diversidad genética de la Monastrell, una variedad antigua en la provincia de Alicante (España) mediante Genotipado por Secuenciación (GBS). BIO Web of Conferences, 2017, 9, 01019.	0.2	1
63	THE NEED TO LEVEL OUT STUDENTS' KNOWLEDGE IN UNDERGRADUATES CONTEXT., 2017,,.		0
64	SUBJECT DESIGN THROUGH AN EXPERIENCE METHODOLOGY. GATHER GOOD PRACTICES TOWARDS A BETTER TEACHING. , 2017, , .		0
65	Angolan vegetable crops have unique genotypes of potential value for future breeding programmes. South African Journal of Science, 2016, 112, 12.	0.7	0
66	Resistance to Tomato leaf curl New Delhi virus inÂ <i>Cucurbita</i> Âspp Annals of Applied Biology, 2016, 169, 91-105.	2.5	57
67	Genetics and Genomics of Cucurbita spp Plant Genetics and Genomics: Crops and Models, 2016, , 211-227.	0.3	4
68	A new genomic library of melon introgression lines in a cantaloupe genetic background for dissecting desirable agronomical traits. BMC Plant Biology, 2016, 16, 154.	3.6	48
69	CRITICAL THINKING OUTCOME ASSESSMENT IN A FIRST YEAR DEGREE COURSE. INTED Proceedings, 2016, , .	0.0	0
70	BOTANY TEACHING RESOURCES IN UNIVERSITY. INTED Proceedings, 2016, , .	0.0	0
71	EVALUATION OF THE OUTCOME APPLICATION AND PRACTICAL THINKING IN LIFE SCIENCES. EDULEARN Proceedings, 2016, , .	0.0	0
72	EVALUATION OF SOFT SKILLS THROUGH RUBRICS IN SUBJECTS RELATED TO LIFE SCIENCES., 2016,,.		0

#	Article	IF	Citations
73	DIVERSITY IN MELON FLESH COLOR: TOOLS FOR GENETIC ANALYSIS. Acta Horticulturae, 2015, , 121-125.	0.2	O
74	Screening a variable germplasm collection of Cucumis melo L. for seedling resistance to Macrophomina phaseolina. Euphytica, 2015, 206, 287-300.	1.2	34
75	Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.). BMC Genetics, 2015, 16, 28.	2.7	72
76	Mechanical transmission of Tomato leaf curl New Delhi virus to cucurbit germplasm: selection of tolerance sources in Cucumis melo. Euphytica, 2015, 204, 679-691.	1,2	73
77	Seeds morpho-colourimetric analysis as complementary method to molecular characterization of melon diversity. Scientia Horticulturae, 2015, 192, 441-452.	3.6	23
78	Diversity of Melon Accessions from Northeastern Brazil and Their Relationships with Germplasms of Diverse Origins. Journal of the American Society for Horticultural Science, 2015, 140, 504-517.	1.0	8
79	AN ANALYSIS IN THE STRUCTURE OF A GENETICALLY CHARACTERIZED MELON GERMPLASM COLLECTION FOR CLIMACTERIC - NON-CLIMACTERIC RIPENING BEHAVIOUR. Acta Horticulturae, 2015, , 95-98.	0.2	0
80	Mapping and Introgression of QTL Involved in Fruit Shape Transgressive Segregation into â€ [^] Piel de Sapoâ€ [™] Melon (Cucucumis melo L.). PLoS ONE, 2014, 9, e104188.	2.5	58
81	Sources of parthenocarpy for Zucchini breeding: relationship with ethylene production and sensitivity. Euphytica, 2014, 200, 349-362.	1.2	25
82	First TILLING Platform in Cucurbita pepo: A New Mutant Resource for Gene Function and Crop Improvement. PLoS ONE, 2014, 9, e112743.	2.5	40
83	SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theoretical and Applied Genetics, 2013, 126, 1285-1303.	3.6	85
84	Involvement of ethylene biosynthesis and signalling in fruit set and early fruit development in zucchini squash (Cucurbita pepoL.). BMC Plant Biology, 2013, 13, 139.	3.6	80
85	Application of Genomic Tools in Plant Breeding. Current Genomics, 2012, 13, 179-195.	1.6	236
86	Genetic diversity of Spanish Cucurbita pepo landraces: an unexploited resource for summer squash breeding. Genetic Resources and Crop Evolution, 2012, 59, 1169-1184.	1.6	47
87	Transcriptome sequencing for SNP discovery across Cucumis melo. BMC Genomics, 2012, 13, 280.	2.8	86
88	Root transcriptional responses of two melon genotypes with contrasting resistance to Monosporascus cannonballus (Pollack et Uecker) infection. BMC Genomics, 2012, 13, 601.	2.8	16
89	High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genomics, 2012, 13, 80.	2.8	110
90	Diversity in Expression of Phosphorus (P) Responsive Genes in Cucumis melo L. PLoS ONE, 2012, 7, e35387.	2.5	18

#	Article	IF	CITATIONS
91	GENETIC DIVERSITY OF INTRODUCED ACCESSIONS OF FOUR SPECIES OF BANKSIA (PROTEACEAE) AS REVEALED BY RAPDS AND TBP MARKERS. Acta Horticulturae, 2012, , 751-756.	0.2	0
92	The genome of melon (<i>Cucumis melo</i> L.). Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11872-11877.	7.1	654
93	Melon Transcriptome Characterization: Simple Sequence Repeats and Single Nucleotide Polymorphisms Discovery for High Throughput Genotyping across the Species. Plant Genome, 2011, 4, 118-131.	2.8	53
94	Genetic Diversity Studies in Cucurbits Using Molecular Tools., 2011,, 140-198.		9
95	Diversity in root architecture and response to P deficiency in seedlings of Cucumis melo L Euphytica, 2011, 181, 323-339.	1.2	25
96	Towards a TILLING platform for functional genomics in Piel de Sapo melons. BMC Research Notes, 2011, 4, 289.	1.4	59
97	Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genomics, 2011, 12, 104.	2.8	177
98	An oligo-based microarray offers novel transcriptomic approaches for the analysis of pathogen resistance and fruit quality traits in melon (Cucumis melo L.). BMC Genomics, 2009, 10, 467.	2.8	61
99	A set of EST-SNPs for map saturation and cultivar identification in melon. BMC Plant Biology, 2009, 9, 90.	3.6	90
100	â€~Piel de Sapo' Breeding Lines Tolerant to Melon Vine Decline. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 1458-1460.	1.0	10
101	Cucumis melo L. New Breeding Lines Tolerant to Melon Vine Decline. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 2022-2024.	1.0	4
102	Quantitative detection of Monosporascus cannonballus in infected melon roots using real-time PCR. European Journal of Plant Pathology, 2008, 120, 147-156.	1.7	9
103	Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theoretical and Applied Genetics, 2008, 118, 139-150.	3.6	115
104	Pumpkin and Winter Squash., 2008,, 317-349.		48
105	THE STUDY OF MOLECULAR DIVERSITY IN NATURAL POPULATIONS OF WILD AND WEEDY TOMATOES AND ITS IMPLICATIONS IN TOMATO BREEDING. Acta Horticulturae, 2008, , 249-256.	0.2	0
106	Effects of root architecture on response to melon vine decline. Journal of Horticultural Science and Biotechnology, 2008, 83, 616-623.	1.9	5
107	GENETIC RESOURCES OF LYCOPERSICON AT THE INSTITUTE FOR THE CONSERVATION AND IMPROVEMENT OF AGRODIVERSITY (COMAV). Acta Horticulturae, 2008, , 293-298.	0.2	2
108	Genetics of Root System Architecture Using Near-isogenic Lines of Melon. Journal of the American Society for Horticultural Science, 2008, 133, 448-458.	1.0	20

#	Article	IF	Citations
109	Performance of <i>Cucumis melo </i> ssp. <i>agrestis </i> as a rootstock for melon. Journal of Horticultural Science and Biotechnology, 2007, 82, 184-190.	1.9	28
110	MELOGEN: an EST database for melon functional genomics. BMC Genomics, 2007, 8, 306.	2.8	87
111	Genetic Structure of Lycopersicon pimpinellifolium (Solanaceae) Populations Collected after the ENSO Event of 1997–1998. Genetic Resources and Crop Evolution, 2007, 54, 359-377.	1.6	12
112	THE SPANISH MELON GENOMICS INITIATIVE. Acta Horticulturae, 2007, , 47-54.	0.2	3
113	ADVANCES IN BREEDING MELONS FOR RESISTANCE TO VINE DECLINE. Acta Horticulturae, 2007, , 39-46.	0.2	0
114	Quantitative detection of Cucumber vein yellowing virus in susceptible and partially resistant plants using real-time PCR. Journal of Virological Methods, 2005, 128, 14-20.	2.1	25
115	Resistance to melon vine decline derived from Cucumis melo ssp. agrestis: genetic analysis of root structure and root response. Plant Breeding, 2004, 123, 66-72.	1.9	42
116	Molecular Diversity of a Germplasm Collection of Squash (<i>Cucurbita moschata</i>) Determined by SRAP and AFLP Markers. Crop Science, 2004, 44, 653-664.	1.8	98
117	Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SBAP markers. Genetic Resources and Crop Evolution, 2003, 50, 227-238.	1.6	64
118	Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theoretical and Applied Genetics, 2003, 107, 271-282.	3.6	335
119	Screening Cucumis sativus landraces for resistance to cucumber vein yellowing virus. Plant Breeding, 2003, 122, 426-430.	1.9	23
120	Widening the genetic basis of virus resistance in tomato. Scientia Horticulturae, 2002, 94, 73-89.	3.6	52
121	Identification of Markers Linked to a Celery Mosaic Virus Resistance Gene in Celery. Journal of the American Society for Horticultural Science, 2001, 126, 432-435.	1.0	12
122	A temporal genetic analysis of disease resistance genes: resistance to melon vine decline derived from Cucumis melo var. agrestis. Plant Breeding, 2000, 119, 329-334.	1.9	12
123	Pathogenicity of fungi associated with melon vine decline and selection strategies for breeding resistant cultivars. Annals of Applied Biology, 2000, 137, 141-151.	2.5	11
124	Minor crops of Mesoamerica in early sources (I). Leafy vegetables. , 2000, 47, 527-540.		8
125	Minor crops of Mesoamerica in early sources (II). Herbs used as condiments., 2000, 47, 541-552.		10
126	Searching for new resistance sources to tomato yellow leaf curl virus within a highly variable wild Lycopersicon genetic pool. Acta Physiologiae Plantarum, 2000, 22, 344-350.	2.1	30

#	Article	IF	CITATION
127	ARTIFICIAL INOCULATION METHODS AND SELECTION CRITERIA FOR BREEDING MELONS AGAINST VINE DECLINE. Acta Horticulturae, 2000, , 155-162.	0.2	7
128	Developing tomato breeding lines resistant to tomato yellow leaf curl virus. Plant Breeding, 1999, 118, 537-542.	1.9	55
129	Genetics of Melon Yellows Virus Resistance Derived from Cucumis melo ssp. agrestis. European Journal of Plant Pathology, 1999, 105, 453-464.	1.7	14
130	Improved Diagnostic Techniques for Tomato Yellow Leaf Curl Virus in Tomato Breeding Programs. Plant Disease, 1999, 83, 1006-1012.	1.4	40
131	Title is missing!. Euphytica, 1998, 101, 259-271.	1.2	92
132	Viral diseases causing the greatest economic losses to the tomato crop. II. The Tomato yellow leaf curl virus — a review. Scientia Horticulturae, 1996, 67, 151-196.	3.6	214
133	Using genetics to improve stress resistance through altering root architecture CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , .	1.0	0