
Moseenkov Serg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1322461/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A composite material with controllable electromagnetic characteristics for the terahertz frequency range. Journal of Applied Physics, 2022, 131, 064103.	2.5	1
2	Calorimetric, NEXAFS and XPS studies of MWCNTs with low defectiveness. Fullerenes Nanotubes and Carbon Nanostructures, 2021, 29, 331-336.	2.1	9
3	The morphology evolution of polyethylene produced in the presence of a <scp>Zieglerâ€type</scp> catalyst anchored on the surface of <scp>multiâ€walled</scp> carbon nanotubes. Journal of Applied Polymer Science, 2021, 138, 50528.	2.6	2
4	Co/multi-walled carbon nanotubes/polyethylene composites for microwave absorption: Tuning the effectiveness of electromagnetic shielding by varying the components ratio. Composites Science and Technology, 2021, 207, 108731.	7.8	27
5	Multi-walled carbon nanotube aerogels in quasi-optical terahertz beams. AIP Conference Proceedings, 2021, , .	0.4	Ο
6	Chemical Vapor Deposition of Silicon Nanoparticles on the Surface of Multiwalled Carbon Nanotubes. Journal of Structural Chemistry, 2020, 61, 617-627.	1.0	5
7	Using Current-Voltage Characteristics to Control the Structure of Contacts in Polyethylene Based Composites Modified by Multiwalled Carbon Nanotubes. Journal of Structural Chemistry, 2020, 61, 628-639.	1.0	4
8	Electrophysical Properties of Composites Based on Polyethylene Modified with Multi-Walled Carbon Nanotubes with High Content of Fe–Co-Catalyst. Russian Journal of Applied Chemistry, 2020, 93, 586-594.	0.5	3
9	Vacuum-tight ceramic composite materials based on alumina modified with multi-walled carbon nanotubes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 254, 114508.	3.5	9
10	Structural and electromagnetic properties of Fe2Co-multi-walled carbon nanotubes-polystyrene based composite. Journal of Alloys and Compounds, 2020, 844, 156107.	5.5	16
11	Interaction of Multiwalled Carbon Nanotube Aerogels with Quasiâ€Optical Terahertz Beams. Physica Status Solidi (B): Basic Research, 2019, 256, 1900251.	1.5	2
12	Formation of Zieglerâ€type catalytic systems on the surface of multiâ€walled carbon nanotubes for the production of composite materials by <i>in situ</i> polymerization. Journal of Applied Polymer Science, 2019, 136, 48212.	2.6	4
13	Effect of ultrasonic treatment on the properties of multiwalled carbon nanotubes – polymethylmethacrylate composites: Effect of applied voltage and pressure on conductivity of the composites. EXPRESS Polymer Letters, 2019, 13, 1057-1070.	2.1	3
14	The low-temperature specific heat of MWCNTs. Low Temperature Physics, 2019, 45, 347-354.	0.6	15
15	In situ Polymerization Technique for Obtaining Composite Materials Based on Polyethylene, Multi-walled Carbon Nanotubes and Cobalt Nanoparticles. Russian Journal of Applied Chemistry, 2018, 91, 127-135.	0.5	15
16	Influence of Carbon Nanotube Spatial Distribution on Electromagnetic Properties of Nanotube–Polymer Composites. Physica Status Solidi (B): Basic Research, 2018, 255, 1700257.	1.5	4
17	Electromagnetic Interaction Between Spherical Aerogels of Multiâ€Walled Carbon Nanotubes. Physica Status Solidi (B): Basic Research, 2018, 255, 1700256.	1.5	13
18	Electromagnetic Parameters of Composite Materials Based on Polyethylene and Multi-Walled Carbon Nanotubes Modified by Iron Oxide Nanoparticles. Russian Journal of Applied Chemistry, 2018, 91, 1994-2002.	0.5	4

#	Article	IF	CITATIONS
19	The Usage of Conducting Wire Sphere Models for the Estimation of Electrophysical Properties of Multiwalled Carbon Nanotube Spherical Aerogels. Physica Status Solidi (B): Basic Research, 2018, 255, 1800193.	1.5	5
20	Structure of the in situ produced polyethylene based composites modified with multi-walled carbon nanotubes: In situ synchrotron X-ray diffraction and differential scanning calorimetry study. Composites Science and Technology, 2018, 167, 148-154.	7.8	28
21	A model for catalytic synthesis of carbon nanotubes in a fluidized-bed reactor: Effect of reaction heat. Chemical Engineering Journal, 2017, 329, 305-311.	12.7	17
22	Terahertz dielectric properties of multiwalled carbon nanotube/polyethylene composites. Materials Research Express, 2017, 4, 106201.	1.6	21
23	The electromagnetic characteristics of the composites based on hexaferrites and MCNT at gigahertz and terahertz		1
24	Length-dependent broadband electric properties of PMMA composites filled with carbon nanotubes. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1025-1033.	1.8	7
25	Modification of the surface of carbon fibers with multi-walled carbon nanotubes and its effect on mechanical characteristics of composites with epoxy resin. Russian Journal of Applied Chemistry, 2016, 89, 1969-1977.	0.5	3
26	Terahertz dielectric properties of MWCNT/PE composites. , 2016, , .		0
27	Electrophysical Properties of Onion-Like Carbon. Russian Physics Journal, 2016, 59, 171-176.	0.4	1
28	Carbon nanotubes and carbon onions for modification of styrene–acrylate copolymer nanocomposites. Polymer Composites, 2015, 36, 1048-1054.	4.6	6
29	Investigation of electromagnetic properties of MWCNT aerogels produced via catalytic ethylene decomposition. Physica Status Solidi (B): Basic Research, 2015, 252, 2519-2523.	1.5	23
30	Dielectric properties of onion-like carbon and detonation nanodiamond/polydimethysiloxane composites. Polymer Composites, 2015, 36, 2084-2092.	4.6	10
31	Research of Electromagnetic Properties of Composite Materials on the Basis of MWNTs in Microwave Range. Advanced Materials Research, 2014, 1040, 142-147.	0.3	Ο
32	Carbon nanotubes and carbon onions for modification of styrene-acrylate copolymer based nanocomposites. , 2014, , .		0
33	Raman spectra for characterization of defective CVD multiâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2014, 251, 2444-2450.	1.5	81
34	Change in sizes of carbon aggregates and primary particles of the onion-like carbon synthesized by high-temperature annealing of nanodiamond. Russian Chemical Bulletin, 2014, 63, 599-604.	1.5	2
35	Comparative study of multiwalled carbon nanotube/polyethylene composites produced via different techniques. Physica Status Solidi (B): Basic Research, 2014, 251, 2437-2443.	1.5	21
36	Metal-insulator transition and size dependent electrical percolation in onion-like carbon/polydimethylsiloxane composites. Journal of Applied Physics, 2014, 115, .	2.5	23

#	Article	IF	CITATIONS
37	Laser modification of optical properties of a carbon nanotube suspension in dimethylformamide. Technical Physics Letters, 2013, 39, 337-340.	0.7	18
38	Immobilization of recombinant E. coli thermostable lipase by entrapment inside silica xerogel and nanocarbon-in-silica composites. Journal of Molecular Catalysis B: Enzymatic, 2013, 98, 78-86.	1.8	23
39	An investigation of electromagnetic response of composite polymer materials containing carbon nanostructures within the range of frequencies 10 MHz – 1.1 THz. Russian Physics Journal, 2013, 55, 970-976.	0.4	26
40	Carbon-in-silica matrices for the preparation of heterogeneous biocatalysts: The synthesis of carbon nanofibers on a Ni/SiO2 catalyst and the characterization of the resulting adsorbents for the immobilization of thermostable lipase. Kinetics and Catalysis, 2013, 54, 749-760.	1.0	7
41	Characterization of aluminum-carbon composites obtained via mechanical activation of aluminum and carbon nanotubes. Bulletin of the Russian Academy of Sciences: Physics, 2013, 77, 162-165.	0.6	3
42	Current-conducting properties of paper consisting of multiwall carbon nanotubes. Journal of Experimental and Theoretical Physics, 2013, 116, 860-865.	0.9	3
43	Recombinant strain producing thermostable lipase from Thermomyces lanuginosus immobilized into nanocarbon-in-silica matrices and properties of the prepared biocatalysts. Applied Biochemistry and Microbiology, 2013, 49, 296-305.	0.9	9
44	Electromagnetic properties of MWCNT/PE composites at different levels of THz peak power. , 2013, , .		0
45	Broadband dielectric properties of onion-like carbon/polyurethane composites. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2683-2688.	1.8	6
46	Raman Spectra for Characterization of Onion-Like Carbon. Journal of Nanoelectronics and Optoelectronics, 2013, 8, 106-109.	0.5	19
47	Onset of Electrical Percolation in Onion-Like Carbon/Poly(methyl methacrylate) Composites. Nanoscience and Nanotechnology Letters, 2013, 5, 1201-1206.	0.4	1
48	Localization and electrical transport in onion-like carbon based composites. Journal of Applied Physics, 2012, 111, 103701.	2.5	9
49	Terahertz transmission spectra of composite materials based on MWNT with different time of ultrasonic processing. , 2012, , .		5
50	Complex permittivity of polymer composites containing carbon nanostructures in frequency range 0.17 ÷1.1 THz. , 2012, , .		1
51	CNT/PMMA Electromagnetic Coating: Effect of Carbon Nanotube Diameter. Fullerenes Nanotubes and Carbon Nanostructures, 2012, 20, 527-530.	2.1	3
52	Immobilization of enzymatic active substances by immuring inside nanocarbon-in-silica composites. Journal of Molecular Catalysis B: Enzymatic, 2012, 76, 116-124.	1.8	8
53	Carbon Onion Composites for EMC Applications. IEEE Transactions on Electromagnetic Compatibility, 2012, 54, 6-16.	2.2	44
54	Electromagnetic response of polymer composites with quasi-spherical nanocarbon inclusions: theory below the percolation threshold. Journal of Polymer Engineering, 2011, 31, .	1.4	0

#	Article	IF	CITATIONS
55	Structure and Electrophysical Properties of Multiwalled Carbon Nanotube/Polymethylmethacrylate Composites Prepared via Coagulation Technique. Nanoscience and Nanotechnology Letters, 2011, 3, 18-23.	0.4	9
56	Hydroxylated Detonation Nanodiamond: FTIR, XPS, and NMR Studies. Journal of Physical Chemistry C, 2011, 115, 19005-19011.	3.1	143
57	Laser-induced diamagnetism in suspension of onion-like carbon particles. Technical Physics Letters, 2011, 37, 831-834.	0.7	5
58	Comparative study of reflectance properties of nanodiamonds, onionâ€like carbon and multiwalled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2011, 248, 2572-2576.	1.5	16
59	EPR Spectra of Nitrogen in Ultra-Dispersed Diamonds. Applied Magnetic Resonance, 2010, 39, 295-302.	1.2	2
60	Multiâ€walled carbon nanotubes with ppm level of impurities. Physica Status Solidi (B): Basic Research, 2010, 247, 2695-2699.	1.5	50
61	Electrophysical and Electromagnetic Properties of Pure MWNTs and MWNT/PMMA Composite Materials Depending on Their Structure. Fullerenes Nanotubes and Carbon Nanostructures, 2010, 18, 505-515.	2.1	25
62	Dielectric properties of a novel high absorbing onion-like-carbon based polymer composite. Diamond and Related Materials, 2010, 19, 91-99.	3.9	29
63	Optical limiting and bleaching effects in a suspension of onion-like carbon. Quantum Electronics, 2009, 39, 342-346.	1.0	18
64	Onion-like carbon based polymer composite films in microwaves. Solid State Sciences, 2009, 11, 1762-1767.	3.2	18
65	Dielectric properties of onion-like carbon based polymer films: Experiment and modeling. Solid State Sciences, 2009, 11, 1828-1832.	3.2	13
66	Electromagnetic shielding properties of MWCNT/PMMA composites in Kaâ€band. Physica Status Solidi (B): Basic Research, 2009, 246, 2662-2666.	1.5	39
67	Dielectric properties of MWCNT based polymer composites close and below percolation threshold. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 2814-2816.	0.8	5
68	Nano-scaled onion-like carbon: Prospective material for microwave coatings. Metamaterials, 2009, 3, 148-156.	2.2	28
69	Low-frequency (10–50 kHz) impedance of polystyrene-onion-like-carbon composites. Technical Physics Letters, 2009, 35, 85-88.	0.7	9
70	Photoinduced transparency of a suspension of onion-like carbon nanoparticles. Technical Physics Letters, 2009, 35, 162-165.	0.7	6
71	Influence of Humidity on Dielectric Properties of PMMA Nanocomposites Containing Onion-Like Carbon. Ferroelectrics, 2009, 391, 131-138.	0.6	3
72	High dielectric permittivity of percolative composites based on onion-like carbon. Applied Physics Letters, 2009, 95, 112901.	3.3	44

#	Article	IF	CITATIONS
73	TEMPERATURE DEPENDENCIES OF CONDUCTIVITY OF MULTI-WALLED CARBON NANOTUBES AND ONION-LIKE CARBON IN DIFFERENT GASEOUS MEDIUM. International Journal of Nanoscience, 2009, 08, 19-22.	0.7	6
74	Colloidal stability of modified nanodiamond particles. Diamond and Related Materials, 2009, 18, 620-626.	3.9	221
75	Dielectric Response of Onion-Like Carbon-Based Polymethyl Methacrylate Composites. Journal of Nanoelectronics and Optoelectronics, 2009, 4, 261-266.	0.5	3
76	Onion-Like Carbon in Microwaves: Electromagnetic Absorption Bands and Percolation Effect. Journal of Nanoelectronics and Optoelectronics, 2009, 4, 257-260.	0.5	13
77	Detonation nanodiamond and onionâ€like carbon: applications in composites. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2245-2251.	1.8	52
78	Controllable electromagnetic response of onionâ€ŀike carbon based materials. Physica Status Solidi (B): Basic Research, 2008, 245, 2051-2054.	1.5	32
79	Double layer supercapacitor properties of onionâ€ŀike carbon materials. Physica Status Solidi (B): Basic Research, 2008, 245, 2296-2299.	1.5	100
80	Terahertz probing of onion-like carbon-PMMA composite films. Diamond and Related Materials, 2008, 17, 1608-1612.	3.9	45
81	Onion-like carbon for terahertz electromagnetic shielding. Diamond and Related Materials, 2008, 17, 462-466.	3.9	61
82	Nanodiamond bioconjugate probes and their collection by electrophoresis. Diamond and Related Materials, 2008, 17, 1858-1866.	3.9	100
83	Attenuation of electromagnetic waves in onion-like carbon composites. Diamond and Related Materials, 2007, 16, 1231-1235.	3.9	55
84	The Thermal Stability of Nanodiamond Surface Groups and Onset of Nanodiamond Graphitization. Fullerenes Nanotubes and Carbon Nanostructures, 2006, 14, 557-564.	2.1	70
85	Properties of individual fractions of detonation nanodiamond. Diamond and Related Materials, 2006, 15, 1804-1808.	3.9	67