
Jeremy J Pietron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1322313/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protons in Catalytic Architectures: Near (NMR) and Far (Impedance). Journal of the Electrochemical Society, 2022, 169, 036514.	2.9	0
2	Review of the Effects of Polymer Binder Properties on Microstructure and Irreversible Volume Growth of Plastic Bonded Explosives Formulations. Propellants, Explosives, Pyrotechnics, 2022, 47, .	1.6	7
3	Photoenhanced Degradation of Sarin at Cu/TiO ₂ Composite Aerogels: Roles of Bandgap Excitation and Surface Plasmon Excitation. ACS Applied Materials & Interfaces, 2021, 13, 12550-12561.	8.0	26
4	Electrochemical Modulation of Strong Vibration–Cavity Coupling. ACS Photonics, 2020, 7, 165-173.	6.6	16
5	Photocatalytic CO Oxidation over Nanoparticulate Au-Modified TiO ₂ Aerogels: The Importance of Size and Intimacy. ACS Catalysis, 2020, 10, 14834-14846.	11.2	25
6	Power of Aerogel Platforms to Explore Mesoscale Transport in Catalysis. ACS Applied Materials & Interfaces, 2020, 12, 41277-41287.	8.0	13
7	Stabilization of reduced copper on ceria aerogels for CO oxidation. Nanoscale Advances, 2020, 2, 4547-4556.	4.6	12
8	Electronic Metal–Support Interactions in the Activation of CO Oxidation over a Cu/TiO ₂ Aerogel Catalyst. Journal of Physical Chemistry C, 2020, 124, 21491-21501.	3.1	21
9	Mesoporous Copper Nanoparticle/TiO ₂ Aerogels for Room-Temperature Hydrolytic Decomposition of the Chemical Warfare Simulant Dimethyl Methylphosphonate. ACS Applied Nano Materials, 2020, 3, 3503-3512.	5.0	21
10	Enhanced protonic conductivity and IFET behavior in individual proton-doped electrospun chitosan fibers. Journal of Materials Chemistry C, 2019, 7, 10833-10840.	5.5	6
11	Energy-tunable photocatalysis by hot carriers generated by surface plasmon polaritons. Journal of Materials Chemistry A, 2019, 7, 7015-7024.	10.3	15
12	Low-temperature CO oxidation at persistent low-valent Cu nanoparticles on TiO2 aerogels. Applied Catalysis B: Environmental, 2019, 252, 205-213.	20.2	47
13	(Invited)ÂNanoscale Design and Modification of Plasmonic Aerogels for Photocatalytic Hydrogen Generation. ECS Meeting Abstracts, 2018, MA2018-01, 1871-1871.	0.0	0
14	Electrical and electrochemical characterization of proton transfer at the interface between chitosan and PdH _x . Journal of Materials Chemistry C, 2017, 5, 11083-11091.	5.5	23
15	Plasmonic Aerogels as a Three-Dimensional Nanoscale Platform for Solar Fuel Photocatalysis. Langmuir, 2017, 33, 9444-9454.	3.5	33
16	Oxidation-stable plasmonic copper nanoparticles in photocatalytic TiO ₂ nanoarchitectures. Nanoscale, 2017, 9, 11720-11729.	5.6	76
17	Aberration-corrected Scanning Transmission Electron Microscopy and Spectroscopy of Nonprecious Metal Nanoparticles in Titania Aerogels. Microscopy and Microanalysis, 2016, 22, 324-325.	0.4	0
18	Review of roles for photonic crystals in solar fuels photocatalysis. Journal of Photonics for Energy, 2016, 7, 012007.	1.3	14

JEREMY J PIETRON

#	Article	IF	CITATIONS
19	Fabrication of Highâ€aspect Ratio (HAR) Palladium Nanorodâ€modified Electrodes for Raman Spectroelectrochemical Studies of Thiolate Desorption from HAR Nanomaterials. Electroanalysis, 2016, 28, 1553-1561.	2.9	0
20	Electrochemical Deposition and Spectroelectrochemical Response of Bromophenol Blue Films on Gold. Electroanalysis, 2015, 27, 1960-1967.	2.9	2
21	Graphitic biochar as a cathode electrocatalyst support for microbial fuel cells. Bioresource Technology, 2015, 195, 147-153.	9.6	124
22	Correlating Changes in Electron Lifetime and Mobility on Photocatalytic Activity at Network-Modified TiO ₂ Aerogels. Journal of Physical Chemistry C, 2015, 119, 17529-17538.	3.1	42
23	The role of photonics in energy. Journal of Photonics for Energy, 2015, 5, 050997.	1.3	18
24	Plasmonic enhancement of visible-light water splitting with Au–TiO2 composite aerogels. Nanoscale, 2013, 5, 8073.	5.6	130
25	Ultraviolet and Visible Photochemistry of Methanol at 3D Mesoporous Networks: TiO ₂ and Au–TiO ₂ . Journal of Physical Chemistry C, 2013, 117, 15035-15049.	3.1	49
26	Direct methanol oxidation at low overpotentials using Pt nanoparticles electrodeposited at ultrathin conductive RuO2 nanoskins. Journal of Materials Chemistry, 2012, 22, 5197.	6.7	36
27	A Raman spectroelectrochemical study of potential-controlled benzenethiol desorption from Pt–Fe group alloy films. Journal of Power Sources, 2012, 212, 212-219.	7.8	3
28	Electrocatalysis at Co–poly(difluoropyrrole) electrodeposited on Vulcan carbon supports: demonstration of halogenated polypyrrole as an electrocatalytic material. Journal of Materials Chemistry, 2011, 21, 7668.	6.7	5
29	The utility of Shewanella japonica for microbial fuel cells. Bioresource Technology, 2011, 102, 290-297.	9.6	41
30	Measurement of Benzenethiol Adsorption to Nanostructured Pt, Pd, and PtPd Films Using Raman Spectroelectrochemistry. Langmuir, 2010, 26, 6809-6817.	3.5	12
31	Controlling the Sensitivity, Specificity, and Time Signature of Sensors through Architectural Design on the Nanoscale. ECS Transactions, 2009, 19, 171-179.	0.5	3
32	Dual-Pathway Kinetics Assessment of Sulfur Poisoning of the Hydrogen Oxidation Reaction at High Surface-Area Platinum/Vulcan Carbon Electrodes. Journal of the Electrochemical Society, 2009, 156, B1322.	2.9	10
33	Characterization of electrochemically active bacteria utilizing a highâ€throughput voltageâ€based screening assay. Biotechnology and Bioengineering, 2009, 102, 436-444.	3.3	74
34	The influence of acidity on microbial fuel cells containing Shewanella oneidensis. Biosensors and Bioelectronics, 2008, 24, 900-905.	10.1	108
35	Characterization of Ligand Effects on Water Activation in Triarylphosphine-Stabilized Pt Nanoparticle Catalysts by X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2008, 112, 4961-4970.	3.1	24
36	Electrochemical Observation of Ligand Effects on Oxygen Reduction at Ligand-Stabilized Pt Nanoparticle Electrocatalysts. Electrochemical and Solid-State Letters, 2008, 11, B161.	2.2	18

JEREMY J PIETRON

#	Article	IF	CITATIONS
37	Electrochemically Active Soluble Mediators from Shewanella oneidensis: Relevance to Microbial Fuel Cells and Extracellular Electron Transfer. ECS Meeting Abstracts, 2008, , .	0.0	0
38	Dual-Pathway Kinetics Assessment of Sulfur Poisoning of the Hydrogen Oxidation Reaction at High-Surface-Area Platinum/Vulcan Carbon Electrodes. ECS Transactions, 2007, 11, 843-851.	0.5	1
39	Electrochemical Observation of Ligand Effects on Oxygen Reduction at Ligand-Stabilized Pt Nanoparticle Electrocatalysts. ECS Transactions, 2007, 11, 217-226.	0.5	3
40	Dye-sensitized titania aerogels as photovoltaic electrodes for electrochemical solar cells. Solar Energy Materials and Solar Cells, 2007, 91, 1066-1074.	6.2	35
41	A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes. Biosensors and Bioelectronics, 2007, 22, 1672-1679.	10.1	172
42	High Power Density from a Miniature Microbial Fuel Cell UsingShewanella oneidensisDSP10. Environmental Science & Technology, 2006, 40, 2629-2634.	10.0	488
43	Triarylphosphine-Stabilized Platinum Nanoparticles in Three-Dimensional Nanostructured Films as Active Electrocatalysts. Journal of Physical Chemistry B, 2006, 110, 21487-21496.	2.6	52
44	Enhanced Oxygen Reduction Activity in Acid by Tin-Oxide Supported Au Nanoparticle Catalysts. Journal of the Electrochemical Society, 2006, 153, A1702.	2.9	53
45	Impact of Sulfur Dioxide on the Performance of the PEMFC Cathodes. ECS Transactions, 2006, 3, 685-694.	0.5	7
46	Impact of Sulfur Dioxide on the Performance of PEMFC Cathodes. ECS Transactions, 2006, 1, 103-109.	0.5	0
47	Leveraging Metal-Support Interactions to Improve the Activity of PEMFC Cathode Catalysts. ECS Transactions, 2006, 1, 97-105.	0.5	3
48	Metal Carbide-Based Hydrodesulfurization Catalysts as Sulfur-Tolerant Electrocatalysts for PEMFC Anodes. ECS Transactions, 2006, 3, 471-477.	0.5	7
49	Using an Oxide Nanoarchitecture To Make or Break a Proton Wire. Analytical Chemistry, 2005, 77, 7924-7932.	6.5	31
50	A practical guide to transmission electron microscopy of aerogels. Journal of Non-Crystalline Solids, 2004, 350, 277-284.	3.1	22
51	Improving the efficiency of titania aerogel-based photovoltaic electrodes by electrochemically grafting isopropyl moieties on the titania surface. Journal of Non-Crystalline Solids, 2004, 350, 107-112.	3.1	17
52	The effect of particle size and protein content on nanoparticle-gold-nucleated cytochrome c superstructures encapsulated in silica nanoarchitectures. Journal of Non-Crystalline Solids, 2004, 350, 31-38.	3.1	24
53	Silica Nanoarchitectures Incorporating Self-Organized Protein Superstructures with Gas-Phase Bioactivity. Nano Letters, 2003, 3, 1463-1467.	9.1	84
54	Using Three Dimensions in Catalytic Mesoporous Nanoarchitectures. Nano Letters, 2002, 2, 545-549.	9.1	147

JEREMY J PIETRON

#	Article	IF	CITATIONS
55	Mesoporous, microporous and nanowired: electron microscopy of aerogel composites. Microscopy and Microanalysis, 2002, 8, 1240-1241.	0.4	0
56	Electrochemically induced surface modification of titanols in a`nanoglued' titania aerogel–silica aerogel composite film. Journal of Non-Crystalline Solids, 2001, 285, 13-21.	3.1	12
57	Solvent Refractive Index and Core Charge Influences on the Surface Plasmon Absorbance of Alkanethiolate Monolayer-Protected Gold Clusters. Journal of Physical Chemistry B, 2000, 104, 564-570.	2.6	508
58	Electronic Conductivity of Solid-State, Mixed-Valent, Monolayer-Protected Au Clusters. Journal of the American Chemical Society, 2000, 122, 11465-11472.	13.7	283
59	Using Electrons Stored on Quantized Capacitors in Electron Transfer Reactions. Journal of the American Chemical Society, 1999, 121, 5565-5570.	13.7	97
60	Mediated Electrocatalysis with Polyanthraquinone-Functionalized Monolayer-Protected Clusters. Journal of Physical Chemistry B, 1999, 103, 4440-4446.	2.6	46
61	Three-Dimensional Monolayers:Â Voltammetry of Alkanethiolate-Stabilized Gold Cluster Molecules. Langmuir, 1998, 14, 5612-5619.	3.5	90
62	Gold Nanoelectrodes of Varied Size: Transition to Molecule-Like Charging. Science, 1998, 280, 2098-2101.	12.6	1,018
63	Three-Dimensional Monolayers:Â Nanometer-Sized Electrodes of Alkanethiolate-Stabilized Gold Cluster Molecules. Journal of Physical Chemistry B, 1997, 101, 2663-2668.	2.6	137
64	Post-column derivatization in narrow-bore capillaries for the analysis of amino acids and proteins by capillary electrophoresis with fluorescence detection. Journal of Separation Science, 1994, 6, 373-384.	1.0	30